How to Collect Datastream IBES Global Aggregate Earnings Data with Python and CodeBook - Part 1

Jonathan Legrand
Developer Advocate Developer Advocate

In this article, we build the Python function Get_IBES_GA with ipywidgets Dropdowns to retrieve Institutional Brokers' Estimate System (IBES) Global Aggregate earnings data for country and regional sectors in an interactive way. With this function in CodeBook, no need to know how to code, it's as simple as click and play!

This is only Part 1; I will attempt to see the best ways in which the bellow can be used to extract insights, possibly in graphical ways. If you have a workflow in mind for which the above would be useful, I would be happy to hear about it. Please do not hesitate to submit your propositions to jonathan.legrand@refinitiv.com

Returns a Pandas data-frame with:

  • PE Ratio
  • Earnings Growth
  • PEG Ratio
  • EPS
  • Risk Premium (data not available for Regions)
  • EV/EBITDA
  • Revision Ratio
  • Dividend Yield

Overview _Fiscal_Years

  • Ratios are displayed only for Fiscal Years (FY0, FY1, FY2, FY3)
  • PE Ratio
  • Earnings Growth
  • PEG Ratio
  • EPS
  • Risk Premium (data not available for Regions, only for Countries)
  • EV/EBITDA
  • Revision Ratio
  • Dividend Yield

Development Tools & Resources

The example code demonstrating the use case is based on the following development tools and resources:

  • Refinitiv's DataStream Web Services (DSWS): Access to DataStream data. A DataStream or Refinitiv Workspace IDentification (ID) will be needed to run the code below.

Get to Coding

We need to gather our data. Since Refinitiv's DataStream Web Services (DSWS) allows for access to ESG data covering nearly 70% of global market cap and over 400 metrics, naturally it is more than appropriate. We can access DSWS via the Python library "DatastreamDSWS" that can be installed simply by using pip install.

    	
            

import DatastreamDSWS as dsws

 

# We can use our Refinitiv's Datastream Web Socket (DSWS) API keys that allows us to be identified by Refinitiv's back-end services and enables us to request (and fetch) data: Credentials are placed in a text file so that it may be used in this code without showing it itself.

(dsws_username, dsws_password) = (open("Datastream_username.txt","r"),

                                  open("Datastream_password.txt","r"))

 

ds = dsws.Datastream(username = str(dsws_username.read()),

                     password = str(dsws_password.read()))

 

# It is best to close the files we opened in order to make sure that we don't stop any other services/programs from accessing them if they need to.

dsws_username.close()

dsws_password.close()

 

 

# # Alternatively one can use the following:

# import getpass

# dsusername = input()

# dspassword = getpass.getpass()

# ds = dsws.Datastream(username = dsusername, password = dspassword)

    	
            

import warnings # ' warnings ' is a native Python library allowing us to raise warnings and errors to users.

from datetime import datetime # This is needed to keep track of when code runs.

import pandas as pd # pandas is an open source data analysis and manipulation tool that allows us to use data-frames. Version 1.1.4 was used in this article.

import numpy as np # NumPy is a library allowing for array manipulations including linear algebra, fourier transform, and matrices. Version 1.20.1 was used in this article.

from tqdm.notebook import trange # ' tqdm ' allows loops to show a progress meter. Version 4.48.2 was used in this article.

import ipywidgets as widgets # ipywidgets is a library of interactive HTML widgets for Jupyter notebooks and the IPython kernel. Version 7.5.1 was used in this article.

from IPython.display import display # This allows us to display data-frames.

 

for i,j in zip([pd, np, tqdm, widgets],["pandas", "numpy", "tqdm", "ipywidgets"]):

    print(f"The library {j} imported is version {i.__version__}")

The library pandas imported is version 1.1.4
The library numpy imported is version 1.20.1
The library tqdm imported is version 4.48.2
The library ipywidgets imported is version 7.5.1

Step by Step Example

Collecting Datastream Data 

Users ought to be able to select their Country/Region of interest without knowing the Datastream Mnemonics for them. In line with this, the bellow creates tables of reference for Countries/Regions and such Mnemonics and Python functions to allow users easy data retrieval.

Data-Frame of Countries, Regions and their Complimentary DSWS Mnemonic and IBES Code
    	
            

# # From the ' Reference data.xls ' file, one could run and use the following:

# xl_countries = pd.read_excel("Reference data.xls", sheet_name = "Countries")

# xl_regions = pd.read_excel("Reference data.xls", sheet_name = "Regions")

# xl_index = pd.read_excel("Reference data.xls", sheet_name = "Index Names 3")

# xl_columns = pd.read_excel("Reference data.xls", sheet_name = "Column Names 2")

 

# # If you don't have the ' Reference data.xls ' file, just use the bellow:

xl_regions = pd.DataFrame(data = {'Region': {0: 'EAFE', 1: 'EAFE + Canada',2: ...  '@:M1WLDXA'}})

xl_countries = pd.DataFrame(data = {'Region': {0: 'Argentina',1: 'Australia',2: ... ,50: '@:VEMSCIP'}})

# We will use the following to index and column our final data-frame on interest:

xl_index = pd.DataFrame(data = {'Category': {0: 'Energy', 1: 'Energy', 2: 'Energy', ... 88: 'M3MU', 89: 'M3WU'}})

xl_columns = pd.DataFrame({'Column 1': {0: 'PE-Ratio', 1: 'PE-Ratio', 2: 'PE-Ratio',  ... 31: '18M', 32: '', 33: ''}})

 

# # Merging the two data-frames together:

xl_regions = xl_regions.append(xl_countries, ignore_index = True)

Python function Region_to_DSWS_region_mnemonic_and_IBES_code

As per its written definition bellow, this function returns a string of the Datastream Web Service (DSWS) region's mnemonic and IBES code. For certain requests, DSWS needs a ticker specified with a nomenclature that includes DSWS region's mnemonic.

    	
            

def Region_to_DSWS_region_mnemonic_and_IBES_code(region = None, xl_regions = None):

    """Region_to_DSWS_region_mnemonic_and_IBES_code Version 1.0:

    This function returns a string of the Datastream Web Service (DSWS) region's mnemonic and IBES code.

    DSWS is Refinitiv's API retrieving data from Datastream to a Python Pandas data-frame. For information on DSWS, please visit 'https://developers.refinitiv.com/en/api-catalog/eikon/datastream-web-service'.

    For certain requests, DSWS needs a ticker specified with a nomenclature that includes DSWS region's mnemonic. For an example, see 'Examples' bellow.    

    

    

    Parameters:

    ----------

    

    region: str

        Region of choice's name (e.g.: 'EAFE-ex-UK').

        It has to be one of the elements in the following list: ['EAFE' 'EAFE + Canada' ...  'USA' 'Venezuela']

        Default: region = None

    

    xl_regions: Pandas data-frame

        The data-frame of regions to map with, including columns 'Region', 'Mnemonic' and 'Code'.

        This function (' Region_to_DSWS_region_mnemonic_and_IBES_code ') will map ' region ' to 'Mnemonic' and 'Code' in this data-frame and return them.

        If ' None ', a pre-defined data-frame is used.

        It is named with 'xl' at its start because it originally came from the Excel workbook 'Datastream IBES Global Aggregates MSCI.xlsm'.

        Default: xl_regions = None

    

    

    Dependencies:

    ----------

    

    pandas 1.0.3

    

    

    Examples:

    --------

    

    >>> Region_to_DSWS_region_mnemonic_and_IBES_code("EAFE + Canada")

    ('FC', '@:M1EAFEC')

    """

    if xl_regions == None: xl_regions = pd.DataFrame(data = {'Region': {0: 'EAFE', 1: 'EAFE + Canada', ... , 81: '@:VEMSCIP'}})

    

    if region not in xl_regions["Region"].to_list():

        print("Invalid ' region ' argument specified.")

    else:

        return xl_regions[xl_regions["Region"] == region]["Mnemonic"].values[0], xl_regions[xl_regions["Region"] == region]["Code"].values[0]

For example, we could get the Mnemonic and Code for the United Kingdom:

    	
            Region_to_DSWS_region_mnemonic_and_IBES_code("United Kingdom")
        
        
    

('UK', '@:UKMSCIP')

Example with Region "EAFE + Canada"

We 1st need to setup baseline variables

    	
            

ordered_mnemonic = "M1E1,M2E2, ... ,M3WU"

 

# The long string for ' IBESGA_fields ' (and subsequently ' IBESGA_tickers_str ') can be found in the ' Datastream IBES Global Aggregates MSCI .xlsm ' file.

IBESGA_fields = "ALNAME,AF0PE, ... ,ADVYLD"

IBESGA_fields = IBESGA_fields.split(",")

 

# Calling it with ' _str ' at the end to dissociate it from other objects and use it later:

IBESGA_tickers_str = "M1CD,M1CS, ... ,M3WU"

 

IBESGA_full_tickers = ["@:" + Region_to_DSWS_region_mnemonic_and_IBES_code("EAFE + Canada")[0] + i for i in IBESGA_tickers_str.split(",")]

Now we can go ahead and collect our data from Datastream. Note that we split requests in batches using ds_get_twice_data to keep well within request limits.

    	
            

# Defined our dsws data retrieval function

def ds_get_twice_data(tickers, fields, batch = 15, kind = 0):

    

    df = ds.get_data(tickers = tickers[0],

                     fields = fields[:batch],

                     kind = kind)

    _df = ds.get_data(tickers = tickers[0],

                      fields = fields[batch:],

                      kind = kind)

    df = df.append(_df, ignore_index = True)

    

    for i in tickers[1:]:

        _df1 = ds.get_data(tickers = i,

                          fields = fields[:batch],

                           kind = kind)

        _df2 = ds.get_data(tickers = i,

                          fields = fields[batch:],

                          kind = kind)

        _df = _df1.append(_df2, ignore_index = True)

        df = df.append(_df, ignore_index = True)

    

    return df

    	
            

# Collect our data info data-frame ' df ':

df = ds_get_twice_data(tickers = IBESGA_full_tickers, fields = IBESGA_fields, batch = 15, kind = 0)

 

# Tidy our ' df ' and replace stings 'NA' with computationally recognisable nan values:

df = pd.DataFrame(

    index = df["Instrument"].unique(), columns = df["Datatype"].unique(),

    data = [list(df["Value"][df["Instrument"] == i]) for i in df["Instrument"].unique()]).replace('NA', np.nan, regex=True)

 

# Let's keep the tiker names:

df["Tickers"] = df.index

df.index = IBESGA_tickers_str.split(",")

df = df.T[ordered_mnemonic.split(",")].T

 

# Now re-index the data-frame:

_index = [list(xl_index.fillna(method='ffill').loc[i].values) for i in range(len(xl_index.index))]

df.index = pd.MultiIndex.from_tuples(_index)

    	
            

# # re-column the data-frame:

 

# We need to add a column named 'ALNAME'. Since it's a column with 3 levels, it needs to be added thrice.

xl_columns2 = pd.concat([pd.DataFrame({'Column 1': {0: 'ALNAME'}, 'Column 2': {0: ''}, 'Column 3': {0: ''}}), xl_columns], ignore_index = True)

# We need to add a column named 'Tickers' similarlly.

xl_columns2 = pd.concat([xl_columns2, pd.DataFrame({'Column 1': {0: 'Tickers'}, 'Column 2': {0: ''}, 'Column 3': {0: ''}})], ignore_index = True)

# Collumns 'PEG-Ratio' 'Fiscal Year', 'FY0' to 'FY3' happen to be calculated, not pulled from DSWS, so we need to ignore them now and add them later

xl_columns3 = xl_columns2.drop([11,12,13,14]).reset_index(drop = True)

 

_columns = [list(xl_columns3.fillna(method='ffill').loc[i].values) for i in range(len(xl_columns3.index))]

df.columns = pd.MultiIndex.from_tuples(_columns)

    	
            

# PEG-Ratio columns need to be calculated:

for i in range(4):

    df["PEG-Ratio", "Fiscal Year", f"FY{i}"] = df["PE-Ratio", "Fiscal Year", f"FY{i}"] / df["Earnings Growth", "Fiscal Year", f"FY{i}"]

Now let's see our data-frame:

 

 

 

      ALNAME PE-Ratio Earnings Growth ... EV/EBITDA Rev. Ratio Div Yield Tickers PEG-Ratio
          Fiscal Year Forward Fiscal Year ... Fiscal Year Forward       Fiscal Year
          FY0 FY1 FY2 FY3 12M 18M FY0 FY1 FY2 ... FY3 12M 18M       FY0 FY1 FY2 FY3
Energy Energy Energy M1E1 MSCI EAFE + Canada Energy Sector 79.201 12.338 10.531 9.848 11.675 10.801 -85.188 541.945 17.161 ... 4.571 5.127 4.853 5.3305 4.71 @:FCM1E1 -0.92972 0.022766 0.613659 1.42127
M2E2 MSCI EAFE + Canada Energy Industry Group 79.201 12.338 10.531 9.848 11.675 10.801 -85.188 541.945 17.161 ... 4.571 5.127 4.853 5.3305 4.71 @:FCM2E2 -0.92972 0.022766 0.613659 1.42127
Energy Equipment & Services M3ES MSCI EAFE + Canada Energy Equipment & Services... NaN 36.341 28.034 21.719 33.074 29.144 -101.587 NaN 29.634 ... 8.057 10.783 10.033 18.1818 1.931 @:FCM3ES NaN NaN 0.946008 0.746922
Oil, Gas & Consumable Fuels M3OG MSCI EAFE + Canada Oil, Gas & Consumable Fuels... 78.641 12.284 10.487 9.813 11.625 10.756 -85.114 540.201 17.133 ... 4.563 5.116 4.843 5.0218 4.729 @:FCM3OG -0.92395 0.02274 0.612094 1.42755
Materials Materials Materials M1M1 MSCI EAFE + Canada Materials Sector 22.863 13.408 13.971 14.576 13.694 14.111 6.28 70.514 -4.029 ... 6.928 6.592 6.806 13.9673 2.787 @:FCM1M1 3.64061 0.190147 -3.46761 -3.3655
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
Utilities Utilities Utilities M2U2 MSCI EAFE + Canada Utilities Industry Group 18.152 17.298 16.033 15.189 16.982 16.334 4.348 4.937 7.891 ... 9.043 9.721 9.717 1.9969 4.015 @:FCM2U2 4.17479 3.50375 2.03181 2.73233
Electric Utilities M3EU MSCI EAFE + Canada Electric Utilities Industry 17.176 17.407 16.315 15.333 17.118 16.574 7.758 -1.324 6.693 ... 8.806 9.989 10 0 3.871 @:FCM3EU 2.21397 -13.1473 2.43762 2.39541
Gas Utilities M3GU MSCI EAFE + Canada Gas Utilities Industry 19.641 18.267 16.938 15.918 17.94 17.292 3.493 7.518 7.851 ... 8.916 9.711 9.549 7.619 4.23 @:FCM3GU 5.62296 2.42977 2.15743 2.48408
Multi-Utilities M3MU MSCI EAFE + Canada Multi-Utilities Industry 19.432 15.926 14.41 13.819 15.55 14.736 0.387 22.015 10.527 ... 8.914 8.776 8.863 2.0833 4.235 @:FCM3MU 50.2119 0.723416 1.36886 3.2363
Water Utilities M3WU MSCI EAFE + Canada Water Utilities Industry 20.794 19.466 17.276 18.123 19.263 18.126 -23.781 6.82 12.675 ... 12.921 13.206 12.859 13.3333 4.328 @:FCM3WU -0.8744 2.85425 1.363 -3.87741

90 rows × 36 columns

We can select any section of our data-frame for focused analysis

    	
            df["PEG-Ratio"]
        
        
    

 

 

 

      Fiscal Year
        FY0 FY1 FY2 FY3
Energy Energy Energy M1E1 -0.92972 0.022766 0.613659 1.42127
M2E2 -0.92972 0.022766 0.613659 1.42127
Energy Equipment & Services M3ES NaN NaN 0.946008 0.746922
Oil, Gas & Consumable Fuels M3OG -0.92395 0.02274 0.612094 1.42755
Materials Materials Materials M1M1 3.64061 0.190147 -3.46761 -3.3655
... ... ... ... ... ... ... ...
Utilities Utilities Utilities M2U2 4.17479 3.50375 2.03181 2.73233
Electric Utilities M3EU 2.21397 -13.1473 2.43762 2.39541
Gas Utilities M3GU 5.62296 2.42977 2.15743 2.48408
Multi-Utilities M3MU 50.2119 0.723416 1.36886 3.2363
Water Utilities M3WU -0.8744 2.85425 1.363 -3.87741

90 rows × 4 columns

 

Create the Python function Get_IBES_GA with ipywidgets Dropdowns

    	
            

# Create a list to append with our returned data-frame:

DSWS_IBES_GA = []

 

# Define our drop down specificities:

drop_down_IBES_GA_return = widgets.Dropdown(

    options = [""] + xl_regions["Region"].to_list(),

    value = "",

    disabled = False)

 

# Define our drop down specificities for predefined variables:

drop_down_predefined_variables = widgets.Dropdown(

    options = [""] + ["Yes", "No"],

    value = "",

    description = "Use predefined ordered_mnemonic, IBESGA_fields, xl_index and xl_columns2 variables?",

    disabled = False)

    	
            

# Create the function to programmatically return the data-frame of interest

def Get_IBES_GA(area, # ' area ' example: "EAFE + Canada"

                loading_bar = True,

                display_df = True,

                append_DSWS_IBES_GA = True,

                ordered_mnemonic = "predefined",

                IBESGA_fields = "predefined",

                xl_index = "predefined",

                xl_columns2 = "predefined",

                max_row_col = True,

                export_to_excel = True):

    """Get_IBES_GA Version 1.0:

    If ' display_df ' is set to True, this function returns a dataframe of Datastream Web Service (DSWS) data of  Institutional Brokers' Estimate System (IBES) Global Aggregate earnings for country and regional sectors in an interactive way.

    If ' append_DSWS_IBES_GA ' is set to True, user need to have defined a Python list ' DSWS_IBES_GA ', it will then be appended.

    DSWS is Refinitiv's API retrieving data from Datastream to a Python Pandas data-frame. For information on DSWS, please visit 'https://developers.refinitiv.com/en/api-catalog/eikon/datastream-web-service'.

    

    

    Parameters:

    ----------

    

    area: str

        Region of choice's name (e.g.: 'EAFE-ex-UK' or 'EAFE + Canada').

        It has to be one of the elements in the following list: ['EAFE' 'EAFE + Canada' 'EAFE-ex-UK' 'EASEA (EAFE-ex-Japan)'  'EM (Emerging Markets)' 'EM Asia' 'EM Eastern Europe' 'EM Europe'  'EM Europe + Middle East' 'EM Europe, Middle East & Africa' 'EM Far East'  'EM Latin America' 'EMU (Euro)' 'EMU (US Dollar)' 'EMU + UK' 'Europe'  'Europe-ex-EMU' 'Europe-ex-UK' 'Far East' 'G7 Index'  'Kokusai (World-ex-Japan)' 'Nordic Countries' 'North America' 'Pacific'  'Pacific-ex-Japan' 'World' 'World-ex-Australia' 'World-ex-EMU'  'World-ex-Europe' 'World-ex-UK' 'World-ex-USA' 'Argentina' 'Australia'  'Australia' 'Austria' 'Belgium' 'Brazil' 'Canada' 'Chile' 'China'  'Colombia' 'Czech Republic' 'Denmark' 'Egypt' 'Finland' 'France'  'Germany' 'Greece' 'Hong Kong' 'Hungary' 'India' 'Indonesia' 'Ireland'  'Israel' 'Italy' 'Japan' 'Jordan' 'Korea' 'Malaysia' 'Mexico' 'Morocco'  'Netherlands' 'New Zealand' 'Norway' 'Pakistan' 'Peru' 'Philippines'  'Poland' 'Portugal' 'Russia' 'Singapore' 'South Africa' 'Spain'  'Sri Lanka' 'Sweden' 'Switzerland' 'Taiwan' 'Thailand' 'Turkey'  'United Kingdom' 'USA' 'Venezuela']

        It has no default values, but as per the Example bellow, you may want to use this function in conjuncture with ' ipywidgets.interact '.

    

    loading_bar: Boolean

        If set to True, then a loading bar will appear, keeping track of the dsws requests made - the steps that take longest in this function.

        Default: loading_bar = True

    

    display_df: Boolean

        If set to True, the resulting data-frame will be displayed.

        Default: display_df = True

    

    append_DSWS_IBES_GA: Boolean

        If set to True, user needs to have pre-created an empty Python lisy named ' DSWS_IBES_GA ' which will be populated with the data-frame returned.

        Default: append_DSWS_IBES_GA = True

    

    ordered_mnemonic: str or Pandas data-frame

        If set to "predefined", then a predefined Pandas data-frame of mnemonics is used.

        User may enter his/her own Pandas data-frame, but (s)he will need to change all of the following parameters accordingly: ordered_mnemonic, IBESGA_fields, xl_index, and xl_columns2.

        Default: ordered_mnemonic = "predefined"

    

    IBESGA_fields: str or Pandas data-frame

        If set to "predefined", then a predefined Pandas data-frame of Datastream IBESGA fields is used.

        User may enter his/her own Pandas data-frame, but (s)he will need to change all of the following parameters accordingly: ordered_mnemonic, IBESGA_fields, xl_index, and xl_columns2.

        Default: IBESGA_fields = "predefined"

    

    xl_index: str or Pandas data-frame

        If set to "predefined", then a predefined Pandas data-frame is used.

        User may enter his/her own Pandas data-frame, but (s)he will need to change all of the following parameters accordingly: ordered_mnemonic, IBESGA_fields, xl_index, and xl_columns2.

        Default: xl_index = "predefined"

    

    xl_columns2: str or Pandas data-frame

        If set to "predefined", then a predefined Pandas data-frame is used.

        User may enter his/her own Pandas data-frame, but (s)he will need to change all of the following parameters accordingly: ordered_mnemonic, IBESGA_fields, xl_index, and xl_columns2.

        Default: xl_columns2 = "predefined"

    

    max_row_col: Boolean

        If set to True, all of the resulted data-frame's columns and indices (rows) will be displayed.

        Default: max_row_col = True

    

    export_to_excel: Boolean

        If se to True, an excel workbook with one sheet of the returned data-frame will be generated where the python file is run.

        Default: True

    

    

    Dependencies:

    ----------

    

    pandas 1.1.4 as pd

    numpy 1.20.1 as np

    tqdm 4.48.2 via ' from tqdm.notebook import trange '

    DatastreamDSWS as dsws

    warnings

    

    Optional:

    

    ipywidgets 7.5.1

    

    

    Examples:

    ----------

    

    >>> import DatastreamDSWS as dsws

    >>> ds = dsws.Datastream(username = "insert dsws username here", password = "insert dsws password here")

    >>> from datetime import datetime

    >>> import warnings

    >>> from datetime import date

    >>> import pandas as pd

    >>> import numpy as np

    >>> import ipywidgets as widgets

    >>> from IPython.display import display

    >>> 

    >>> xl_regions = pd.DataFrame(data = {'Region': {0: 'EAFE', 1: 'EAFE + Canada',2: 'EAFE-ex-UK', ... ,30: '@:M1WLDXA'}})

    >>> xl_countries = pd.DataFrame(data = {'Region': {0: 'Argentina',1: 'Australia', ... ,50: '@:VEMSCIP'}})

    >>> xl_regions = xl_regions.append(xl_countries, ignore_index = True)

    >>> 

    >>> DSWS_IBES_GA = []

    >>> 

    >>> drop_down_IBES_GA_return = widgets.Dropdown(options = [""] + xl_regions["Region"].to_list(),value = "", disabled = False)

    >>> 

    >>> drop_down_predefined_variables = widgets.Dropdown(options = [""] + ["Yes", "No"], value = "", description = "Use predefined ordered_mnemonic, IBESGA_fields, xl_index and xl_columns2 variables?", disabled = False)

    >>> 

    >>> def Get_IBES_GA_predefined(area):

    >>>     _df = Get_IBES_GA(area)

    >>>     display(_df)

    >>> 

    >>> def IBES_GA_predefined_variables(predefined):

    >>>     if predefined == "Yes":

    >>>         widgets.interact(Get_IBES_GA_predefined, area = drop_down_IBES_GA_return);

    >>>     elif predefined == "No":

    >>>         widgets.interact(Get_IBES_GA, area = drop_down_IBES_GA_return);

    >>> 

    >>> widgets.interact(IBES_GA_predefined_variables, predefined = drop_down_predefined_variables);

    >>> 

    >>> # display(DSWS_IBES_GA[0])

    """

    

    # If the ' area ' is chosen in the following dropdown as an empty value (i.e.: ""), then we don't want to return anything:

    if area == "":

        pass

    else:

        

        # Set data-frame display conditions:

        if max_row_col == True:

            pd.set_option('display.max_row', None)

            pd.set_option('display.max_columns', None)

        

        # # Define reference Python objects:

        

        if ordered_mnemonic == "predefined": ordered_mnemonic = "M1E1,M2E2 ... ,M3MU,M3WU"

        else: ordered_mnemonic = ordered_mnemonic

        

        # The long string for ' IBESGA_fields ' (and subsequently ' IBESGA_tickers_str ') can be found in the ' Datastream IBES Global Aggregates MSCI .xlsm ' file.

        if IBESGA_fields == "predefined":

            IBESGA_fields = "ALNAME,AF0PE, ... ,ADVYLD"

            IBESGA_fields = IBESGA_fields.split(",")

            # Calling it with ' _str ' at the end to dissociate it from other objects and use it later.

            IBESGA_tickers_str = "M1CD,M1CS, ... ,M3WU"

            

            

            # # Define the list of tickers to pull data for from DSWS

            

            def Region_to_DSWS_region_mnemonic_and_IBES_code(region = None):

                """For description of this function, see 'How to collect Datastream IBES Global Aggregate Earnings Data' article on the Refinitiv/LSEG Developer Community Article Catalogue."""

                xl_regions = pd.DataFrame(data = {'Region': {0: 'EAFE', 1: 'EAFE + Canada' ... , 81: '@:VEMSCIP'}})

                if region not in xl_regions["Region"].to_list():

                    warnings.warn("Invalid ' region ' argument specified.")

                else:

                    return xl_regions[xl_regions["Region"] == region]["Mnemonic"].values[0], xl_regions[xl_regions["Region"] == region]["Code"].values[0]

            

            IBESGA_full_tickers = ["@:" + Region_to_DSWS_region_mnemonic_and_IBES_code(area)[0] + i for i in IBESGA_tickers_str.split(",")]

        

        else:

            IBESGA_full_tickers = IBESGA_fields

        

        # # Get coding:

        

        # Create 1st data-frame to subsequentially append

        df0 = ds.get_data(tickers = IBESGA_full_tickers[0],

                          fields = IBESGA_fields[:15],

                          kind = 0)

        df1 = df0.append(ds.get_data(tickers = IBESGA_full_tickers[0],

                                     fields = IBESGA_fields[15:],

                                     kind = 0),

                         ignore_index = True)

        

        ## Append our data-frame with each ticker

        

        # Leave the option for a loading bar:

        if loading_bar == True: J = trange(len(IBESGA_full_tickers), # colour = '#001EFF',

                                                         desc = 'requests', write_bytes = True)

        else: J = range(len(IBESGA_full_tickers[1:]))

        

        # Now request data:

        for i,j in zip(IBESGA_full_tickers, J):

            

            if i == IBESGA_full_tickers[0]:

                pass

            else:            

                # Create a placeholder data-frame ' _df ' to append onto our previously defined data-frame ' df1 '

                _df1 = ds.get_data(tickers = i,

                                  fields = IBESGA_fields[:15],

                                  kind = 0)

                _df2 = ds.get_data(tickers = i,

                                  fields = IBESGA_fields[15:],

                                  kind = 0)

                _df = _df1.append(_df2, ignore_index = True)

                df1 = df1.append(_df, ignore_index = True)

        

        # Rearrange our data-frame to have tickers as index and fields as columns

        df2 = pd.DataFrame(

            index = df1["Instrument"].unique(), columns = df1["Datatype"].unique(),

            data = [list(df1["Value"][df1["Instrument"] == i]) for i in df1["Instrument"].unique()])

        # Replace str 'NA' with numpy nan values

        df2 = df2.replace(['NA'], np.nan)

        for i in range(4):

            df2[f"PEGRatio{i}"] = df2[f"AF{i}PE"] / df2[f"AF{i}GRO"]

        # Need to Rearrange the columns in order

        df2 = df2.reindex(df2.columns[1:11].tolist() + [f"PEGRatio{i}" for i in range(4)] + df2.columns[11:-4].tolist(), axis=1)

        # We don't want to loose the data of which row is for which ticker with the next few lines, so let's create a column with that information

        df2["Tickers"] = df2.index

        # Rename our data-frame's index to fit a standard easier to work with

        df2.index = IBESGA_tickers_str.split(",")

        # Rearrange the order of the rows

        df3 = df2.T[ordered_mnemonic.split(",")].T

        

        # We will use the following ' xl_index ' data-frame to index our returned data-frame

        if xl_index == "predefined":

            xl_index = pd.DataFrame(data = {'Category': {0: 'Energy', 1: 'Energy', ... , 89: 'M3WU'}})

        else:

            xl_index = xl_index

        

        # Now re-index the data-frame:

        _columns = [list(xl_index.fillna(method='ffill').loc[i].values) for i in range(len(xl_index.index))]

        df3.index = pd.MultiIndex.from_tuples(_columns)

        

        ## Now we need to rename the columns:

        

        # If you have the accompanying excel workbook, you can run: ' xl_columns2 = pd.read_excel("Reference data.xls", sheet_name = "Column Names 2").fillna(method='ffill') ''

        if xl_columns2 == "predefined":

            xl_columns2 = pd.DataFrame(data = {'Column 1': {0: 'PE-Ratio', 1: 'PE-Ratio', ... 34: 'Tickers'}})

        else:

            xl_columns2 = xl_columns2

        

        _columns = [list(xl_columns2.loc[i].values) for i in range(len(xl_columns2.index))]

        df3.columns = pd.MultiIndex.from_tuples(_columns)

        

        # Append out previously defined list with the dataframe created

        try:

            if append_DSWS_IBES_GA == True: DSWS_IBES_GA.append(df3)

        except:

            warnings.warn("If ' append_DSWS_IBES_GA ' is set to True, user needs to define an empty Python list ' append_DSWS_IBES_GA ' before running ' Get_IBES_GA '.")

        

        # Export to excel sheet if asked:

        if export_to_excel == True:

            df3.to_excel(excel_writer = f"DSWS_IBES_GA_{area}.xlsx",

                         sheet_name = datetime.now().strftime("%Y.%m.%d_%Hh.%Mm"))

        

        # Just to check if this function worked expectedly, let's return the number of rows in the outputed data-frame

        if display_df == True: return df3

Let's setup and use an interactive widget:

    	
            

def Get_IBES_GA_predefined(area):

    _df = Get_IBES_GA(area)

    display(_df)

    

def IBES_GA_predefined_variables(predefined):

    if predefined == "Yes":

        widgets.interact(Get_IBES_GA_predefined, area = drop_down_IBES_GA_return);

    elif predefined == "No":

        widgets.interact(Get_IBES_GA, area = drop_down_IBES_GA_return);

    	
            widgets.interact(IBES_GA_predefined_variables, predefined = drop_down_predefined_variables);
        
        
    

From there one can interact with widgets:

You may hover over concatinated text to read it all

And you may select from dropdowns

More interestingly, you may select the area of interest

Then, data is collected as the loading bar fills up before rendering our results

 

 

 

 

 

 

 

 

      PE-Ratio Earnings Growth PEG-Ratio EPS Mean Risk premium EV/EBITDA Rev. Ratio Div Yield Tickers
        Fiscal Year Forward Fiscal Year Fiscal Year Fiscal Year Forward Fiscal Year Forward Fiscal Year Forward Rev. Ratio Div Yield Tickers
        FY0 FY1 FY2 FY3 12M 18M FY0 FY1 FY2 FY3 FY0 FY1 FY2 FY3 FY0 FY1 FY2 FY3 12M 18M FY0 FY1 FY2 FY3 12M 18M FY0 FY1 FY2 FY3 12M 18M Rev. Ratio Div Yield Tickers
Energy Energy Energy M1E1 460.023 16.258 13.12 12.335 15.046 13.549 -96.896 2729.53 23.914 6.369 -4.7476 0.005956 0.548633 1.93672 0.336 9.515 11.791 12.542 10.282 11.418 NaN NaN NaN NaN NaN NaN 9.515 6.273 5.54 5.25 6.011 5.652 15.0922 4.567 @:KKM1E1
M2E2 460.023 16.258 13.12 12.335 15.046 13.549 -96.896 2729.53 23.914 6.369 -4.7476 0.005956 0.548633 1.93672 0.336 9.515 11.791 12.542 10.282 11.418 NaN NaN NaN NaN NaN NaN 9.515 6.273 5.54 5.25 6.011 5.652 15.0922 4.567 @:KKM2E2
Energy Equipment & Services M3ES 48.738 24.336 16.978 12.999 21.264 17.879 -61.793 100.27 43.339 30.608 -0.78873 0.242705 0.391749 0.424693 1.914 3.834 5.495 7.177 4.387 5.218 NaN NaN NaN NaN NaN NaN 10.221 9.821 8.184 6.571 9.214 8.422 60 1.933 @:KKM3ES
Oil, Gas & Consumable Fuels M3OG 754.708 16.012 12.984 12.306 14.845 13.399 -98.128 4613.39 23.323 5.512 -7.69106 0.003471 0.556704 2.23258 0.216 10.202 12.582 13.275 11.004 12.192 NaN NaN NaN NaN NaN NaN 9.485 6.171 5.458 5.204 5.917 5.567 10.2171 4.692 @:KKM3OG
Materials Materials Materials M1M1 24.337 15.256 15.8 16.168 15.466 15.853 -0.406 59.526 -3.441 -2.37 -59.9433 0.256291 -4.59169 -6.82194 16.089 25.665 24.782 24.218 25.316 24.699 NaN NaN NaN NaN NaN NaN 9.202 7.408 7.765 7.937 7.556 7.769 18.7947 2.466 @:KKM1M1
M2M2 24.337 15.256 15.8 16.168 15.466 15.853 -0.406 59.526 -3.441 -2.37 -59.9433 0.256291 -4.59169 -6.82194 16.089 25.665 24.782 24.218 25.316 24.699 NaN NaN NaN NaN NaN NaN 9.202 7.408 7.765 7.937 7.556 7.769 18.7947 2.466 @:KKM2M2
Chemicals M3CH 30.134 22.245 20.789 19.053 21.712 21.001 -11.668 35.463 7.007 9.111 -2.58262 0.627273 2.96689 2.09121 16.695 22.616 24.2 26.405 23.171 23.956 NaN NaN NaN NaN NaN NaN 13.859 12.249 11.695 11.045 12.05 11.776 23.3813 1.995 @:KKM3CH
Construction Materials M3CM 20.782 17.937 16.01 14.567 17.245 16.302 -3.319 15.858 12.038 9.904 -6.26152 1.1311 1.32996 1.47082 13.536 15.683 17.571 19.311 16.312 17.256 NaN NaN NaN NaN NaN NaN 8.454 9.033 8.225 7.689 8.752 8.353 26.6055 2.156 @:KKM3CM
Containers & Packaging M3CT 21.836 18.241 16.117 14.806 17.247 16.267 -9.876 19.711 13.18 7.342 -2.21102 0.925422 1.22284 2.01662 16.238 19.439 22.001 23.949 20.56 21.798 NaN NaN NaN NaN NaN NaN 10.344 10.207 9.158 8.866 9.755 9.254 16.6667 2 @:KKM3CT
Metals & Mining M3MM 20.305 10.422 11.899 13.816 10.942 11.869 15.7 94.834 -12.412 -13.877 1.29331 0.109897 -0.95867 -0.9956 20.513 39.966 35.006 30.148 38.068 35.092 NaN NaN NaN NaN NaN NaN 6.593 4.943 5.55 6.002 5.173 5.521 7.6225 3.217 @:KKM3MM
Paper & Forest Products M3PF 21.168 14.034 16.437 16.372 14.753 15.981 -4.005 50.832 -14.619 0.397 -5.28539 0.276086 -1.12436 41.2393 9.832 14.829 12.661 12.711 14.106 13.023 NaN NaN NaN NaN NaN NaN 10.491 8.528 9.35 9.269 8.784 9.201 50 2.498 @:KKM3PF
Industrials Industrials Industrials M1ID 38.012 25.669 21.344 18.795 23.949 21.891 -32.919 48.085 20.323 13.077 -1.15471 0.533826 1.05024 1.43726 9.494 14.059 16.908 19.201 15.069 16.485 NaN NaN NaN NaN NaN NaN 15.635 14.22 12.389 11.402 13.514 12.63 23.5447 1.629 @:KKM1ID
Capital Goods Capital Goods M2CG 35.588 24.677 20.62 18.26 23.051 21.114 -35.761 44.217 19.677 13.021 -0.99516 0.558089 1.04792 1.40235 9.65 13.917 16.656 18.808 14.899 16.266 NaN NaN NaN NaN NaN NaN 14.874 14.13 12.239 11.201 13.395 12.476 22.0871 1.699 @:KKM2CG
Aerospace & Defense M3AD 60.095 25.637 19.173 16.342 23.01 19.987 -67.659 134.406 33.715 17.321 -0.8882 0.190743 0.568679 0.943479 8.239 19.312 25.823 30.295 21.517 24.771 NaN NaN NaN NaN NaN NaN 22.278 15.34 12.396 10.799 14.215 12.799 6.5527 1.45 @:KKM3AD
Building Products M3BP 27.988 23.267 20.783 18.933 22.249 21.052 -4.169 20.292 11.95 9.772 -6.71336 1.14661 1.73916 1.93747 12.157 14.624 16.371 17.971 15.292 16.162 NaN NaN NaN NaN NaN NaN 12.955 13.177 12.122 11.324 12.766 12.254 33.7121 1.412 @:KKM3BP
Construction & Engineering M3CN 29.554 20.199 15.902 14.193 18.53 16.486 -44.204 46.317 27.02 12.038 -0.66858 0.436103 0.588527 1.17902 16.039 23.468 29.809 33.398 25.582 28.753 NaN NaN NaN NaN NaN NaN 8.124 8.025 6.953 7.127 7.641 7.116 1.7544 2.972 @:KKM3CN
Electronic Equipment & Instruments M3EI 34.149 26.911 24.233 21.679 25.82 24.509 -6.623 26.896 11.049 9.805 -5.15612 1.00056 2.19323 2.21101 3.505 4.448 4.94 5.521 4.636 4.884 NaN NaN NaN NaN NaN NaN 15.629 15.039 13.917 12.775 14.612 14.035 28.8136 1.196 @:KKM3EI
Industrial Conglomerates M3IC 30.95 22.84 19.637 17.362 21.517 19.979 -33.445 35.507 16.311 13.54 -0.9254 0.643253 1.20391 1.28227 4.73 6.409 7.455 8.432 6.804 7.328 NaN NaN NaN NaN NaN NaN 11.825 14.08 12.15 10.731 13.265 12.345 25.7485 1.836 @:KKM3IC
Machinery M3MC 32.562 24.616 21.305 19.227 23.285 21.699 -22.564 32.28 15.542 10.806 -1.4431 0.762577 1.3708 1.77929 21.943 29.026 33.537 37.161 30.685 32.928 NaN NaN NaN NaN NaN NaN 15.024 14.263 12.787 12.251 13.689 12.969 31.4332 1.683 @:KKM3MC
Trading Companies & Distributors Industry M3TC 25.016 22.991 20.446 18.214 22.165 20.911 -1.684 8.81 12.449 12.25 -14.8551 2.60965 1.64238 1.48686 20.242 22.025 24.767 27.801 22.846 24.216 NaN NaN NaN NaN NaN NaN 10.657 11.443 10.381 9.289 11.086 10.558 13.3333 1.738 @:KKM3TC
Commercial Services & Supplies Commercial Services & Supplies M2C2 33.587 29.412 26.122 22.809 28.183 26.573 -3.289 14.194 12.597 12.324 -10.2119 2.07214 2.07367 1.85078 8.029 9.169 10.324 11.823 9.569 10.149 NaN NaN NaN NaN NaN NaN 17.198 16.23 14.534 13.315 15.649 14.811 25.1641 1.464 @:KKM2C2
Commercial Services & Supplies M3C3 35.924 31.59 28.387 24.785 30.3 28.735 1.769 13.722 11.284 12.573 20.3075 2.30214 2.51569 1.97129 6.758 7.686 8.553 9.796 8.013 8.449 NaN NaN NaN NaN NaN NaN 15.569 15.091 13.528 12.39 14.569 13.792 17.7305 1.336 @:KKM3C3
Transportation Transportation M2TR 53.824 27.13 21.459 18.841 24.86 22.217 -37.762 98.395 26.795 13.592 -1.42535 0.275725 0.800858 1.38618 9.784 19.411 24.541 27.951 21.183 23.703 NaN NaN NaN NaN NaN NaN 17.145 13.568 11.881 11.194 12.902 12.114 26.8634 1.493 @:KKM2TR
Air Freight & Couriers M3AF 23.481 18.544 17.43 16.622 18.362 17.807 23.379 26.624 6.391 4.861 1.00436 0.696514 2.72727 3.41946 13.206 16.721 17.79 18.655 16.887 17.413 NaN NaN NaN NaN NaN NaN 11.507 10.768 10.292 10.096 10.643 10.401 43.3735 1.649 @:KKM3AF
Airlines M3AL NaN NaN 20.079 9.507 NaN 38.894 -398.184 NaN NaN 90.2 NaN NaN NaN 0.105399 -44.106 -15.7 7.046 14.88 -6.955 3.637 NaN NaN NaN NaN NaN NaN -10.761 36.019 6.961 5.249 13.894 7.918 -7.2917 0.687 @:KKM3AL
Marine M3MA 22.851 11.016 14.868 13.704 12.057 14.049 172.952 107.444 -25.911 8.493 0.132123 0.102528 -0.57381 1.61356 21.273 44.131 32.696 35.473 40.319 34.602 NaN NaN NaN NaN NaN NaN 26.332 5.73 7.333 6.751 6.176 7.002 31.5789 1.928 @:KKM3MA
Road & Rail M3RR 39.396 28.293 24.028 21.123 26.807 24.654 15.396 39.242 18.475 13.755 2.55885 0.720988 1.30057 1.53566 26.717 37.202 43.804 49.83 39.265 42.693 NaN NaN NaN NaN NaN NaN 16.751 16.046 14.359 13.469 15.443 14.611 41.0569 1.433 @:KKM3RR
Transportation Infrastructure M3TI NaN 662.062 49.975 30.378 102.955 51.555 -146.422 NaN 1224.8 64.51 NaN NaN 0.040803 0.470904 -4.955 0.377 4.993 8.214 2.424 4.84 NaN NaN NaN NaN NaN NaN 25.948 18.467 14.374 12.932 16.441 14.66 -5.102 1.186 @:KKM3TI
Consumer Discretionary Consumer Discretionary Consumer Discretionary M1CD 58.928 33.173 25.395 21.756 30.087 26.429 -36.663 77.638 30.626 17.235 -1.60729 0.427278 0.829197 1.26232 7.852 13.949 18.221 21.269 15.379 17.508 NaN NaN NaN NaN NaN NaN 18.65 15.512 12.861 12.701 14.517 13.245 15.6538 1.296 @:KKM1CD
Automobiles & Components Automobiles & Components M2AC 51.593 19.646 15.871 14.223 18.203 16.396 -53.414 162.616 23.783 11.586 -0.96591 0.120812 0.667325 1.2276 6.271 16.467 20.384 22.745 17.773 19.731 NaN NaN NaN NaN NaN NaN 10.494 7.109 6 6.017 6.705 6.165 12.4352 1.098 @:KKM2AC
Auto Components M3AU 58.453 16.917 12.85 11.104 15.303 13.387 -72.618 245.535 31.644 15.725 -0.80494 0.068899 0.40608 0.706137 5.102 17.629 23.208 26.857 19.489 22.278 NaN NaN NaN NaN NaN NaN 9.347 7.252 6.229 5.701 6.879 6.38 9.0395 1.305 @:KKM3AU
Automobiles M3AM 50.573 20.206 16.539 14.945 18.816 17.055 -47.99 150.287 22.169 10.671 -1.05382 0.134449 0.746042 1.40052 6.077 15.21 18.582 20.564 16.334 18.02 NaN NaN NaN NaN NaN NaN 10.734 7.074 5.945 6.091 6.663 6.113 15.311 1.039 @:KKM3AM
Consumer Durables & Apparel Consumer Durables & Apparel M2CA 39.496 24.894 21.827 19.543 23.978 22.45 -17.331 58.657 14.053 12.841 -2.27892 0.424399 1.55319 1.52192 10.379 16.467 18.781 20.975 17.096 18.259 NaN NaN NaN NaN NaN NaN 17.608 14.899 13.523 20.34 14.542 13.896 24.3377 1.215 @:KKM2CA
Household Durables M3HD 16.499 11.858 11.062 9.949 11.498 11.118 5.999 39.14 7.193 9.284 2.75029 0.302964 1.53788 1.07163 12.093 16.826 18.036 20.055 17.353 17.945 NaN NaN NaN NaN NaN NaN 9.087 7.281 7.207 6.349 7.314 7.361 37.6744 2.044 @:KKM3HD
Leisure Equipment & Products M3LE 92.408 57.402 45.055 35.573 49.294 43.267 -8.333 60.984 27.405 26.655 -11.0894 0.941263 1.64404 1.33457 0.699 1.126 1.434 1.816 1.311 1.493 NaN NaN NaN NaN NaN NaN 27.108 36.642 31.144 25.152 33.198 29.71 9.3023 2.776 @:KKM3LE
Textiles & Apparel M3TA 60.762 34.127 28.674 24.988 32.813 30.05 -32.413 78.045 19.019 14.749 -1.87462 0.437273 1.50765 1.69422 18.035 32.111 38.218 43.854 33.396 36.467 NaN NaN NaN NaN NaN NaN 22.419 18.948 16.513 26.625 18.335 17.11 17.9191 0.995 @:KKM3TA
Hotels, Restaurants & Leisure Hotels, Restaurants & Leisure M2HR NaN 83.77 30.087 23.275 50.01 32.791 -116.019 NaN 178.421 29.266 NaN NaN 0.168629 0.795291 -2.802 4.683 13.038 16.854 7.844 11.963 NaN NaN NaN NaN NaN NaN 41.618 25.515 16.38 14.328 20.997 17.149 11.0818 1.122 @:KKM2HR
Hotels Restaurants & Leisure M3HR NaN 83.77 30.087 23.275 50.01 32.791 -116.019 NaN 178.421 29.266 NaN NaN 0.168629 0.795291 -3.069 5.13 14.282 18.462 8.592 13.104 NaN NaN NaN NaN NaN NaN 41.619 25.515 16.38 14.328 20.997 17.148 11.0818 1.122 @:KKM3HR
Media Media M2MD NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN @:KKM2MD
Media M3ME NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN @:KKM3ME
Retailing Retailing M2RT 46.823 39.315 32.45 27.415 36.962 33.604 21.338 19.096 21.156 19.192 2.19435 2.05881 1.53384 1.42846 20.305 24.182 29.298 34.679 25.722 28.293 NaN NaN NaN NaN NaN NaN 20.891 19.816 16.779 15.114 18.749 17.254 15.0235 1.578 @:KKM2RT
Distributors M3DI 25.655 22.032 20.206 19.126 21.388 20.489 5.732 16.447 9.035 5.645 4.47575 1.33958 2.23641 3.38813 5.995 6.982 7.612 8.042 7.192 7.507 NaN NaN NaN NaN NaN NaN 14.482 13.767 12.629 NaN 13.371 12.809 79.3103 1.626 @:KKM3DI
Internet & Catalog Retail M3NT 82.281 70.084 50.214 37.414 62.269 52.959 91.499 17.404 39.57 34.214 0.899256 4.02689 1.26899 1.09353 53.791 63.152 88.142 118.298 71.078 83.573 NaN NaN NaN NaN NaN NaN 30.253 27.479 20.878 17.578 24.935 21.79 -1.5748 1.155 @:KKM3NT
Multiline Retail M3MR 22.783 22.275 20.3 19.213 21.752 20.718 25.087 2.28 9.731 7.532 0.90816 9.76974 2.08612 2.55085 17.945 18.354 20.14 21.279 18.796 19.733 NaN NaN NaN NaN NaN NaN 11.417 11.744 11.212 10.993 11.601 11.305 7.6923 1.453 @:KKM3MR
Specialty Retail M3SR 31.45 24.688 21.866 19.79 23.831 22.428 -4.976 27.39 12.908 10.487 -6.32034 0.901351 1.69399 1.8871 14.657 18.672 21.082 23.293 19.344 20.554 NaN NaN NaN NaN NaN NaN 15.747 14.874 13.839 12.946 14.569 14.042 23.0047 1.64 @:KKM3SR
Consumer Staples Consumer Staples Consumer Staples M1CS 22.224 20.903 19.214 17.937 20.148 19.343 -2.068 6.321 8.789 7.646 -10.7466 3.30691 2.18614 2.34593 12.453 13.24 14.404 15.429 13.736 14.308 NaN NaN NaN NaN NaN NaN 12.989 13.258 12.341 11.988 12.875 12.461 5.7784 2.653 @:KKM1CS
Food & Staples Retailing Food & Staples Retailing M2FD 21.674 21.304 19.216 18.101 20.18 19.315 1.165 1.739 10.865 8.023 18.6043 12.2507 1.76861 2.25614 7.408 7.537 8.355 8.87 7.956 8.313 NaN NaN NaN NaN NaN NaN 9.623 9.844 8.854 9.196 9.412 9.052 2.0772 1.943 @:KKM2FD
Food & Staples Retailing M3FD 21.674 21.304 19.216 18.101 20.18 19.315 1.165 1.739 10.865 8.023 18.6043 12.2507 1.76861 2.25614 7.408 7.537 8.355 8.87 7.956 8.313 NaN NaN NaN NaN NaN NaN 9.623 9.844 8.854 9.196 9.412 9.052 2.0772 1.943 @:KKM3FD
Food Beverage & Tobacco Food Beverage & Tobacco M2FB 21.252 19.677 18.085 16.805 19.059 18.283 -4.647 8 8.807 7.824 -4.57327 2.45962 2.05348 2.14788 14.98 16.178 17.603 18.943 16.703 17.412 NaN NaN NaN NaN NaN NaN 13.968 13.556 12.651 12.024 13.214 12.775 11.2885 2.988 @:KKM2FB
Beverages M3BV 28.699 25.411 22.808 20.836 24.288 23.05 -12.886 12.94 11.409 9.469 -2.22715 1.96376 1.99912 2.20044 10.879 12.287 13.689 14.985 12.855 13.546 NaN NaN NaN NaN NaN NaN 17.363 16.471 14.985 14.325 15.858 15.148 13.8667 2.268 @:KKM3BV
Food Products M3FP 23.178 21.801 20.185 19.155 21.209 20.418 -2.089 6.313 8.008 6.433 -11.0953 3.45335 2.5206 2.97762 13.16 13.991 15.111 15.924 14.382 14.938 NaN NaN NaN NaN NaN NaN 14.535 13.866 13.12 12.759 13.607 13.246 7.7295 2.297 @:KKM3FP
Tobacco M3TB 11.53 10.933 10.2 9.459 10.673 10.307 1.092 5.464 7.183 7.831 10.5586 2.00092 1.42002 1.20789 31.013 32.707 35.056 37.801 33.501 34.693 NaN NaN NaN NaN NaN NaN 9.075 9.434 8.923 8.336 9.254 8.998 17.0455 6.461 @:KKM3TB
Household & Personal Products Household & Personal Products M2HH 25.369 24.013 22.438 21.001 23.167 22.35 2.737 5.647 7.019 6.841 9.26891 4.25235 3.19675 3.06987 12.939 13.67 14.63 15.63 14.169 14.687 NaN NaN NaN NaN NaN NaN 14.612 16.74 15.872 15.13 16.299 15.865 -8.1712 2.421 @:KKM2HH
Household Products M3HP 23.577 22.34 20.964 19.697 21.553 20.821 7.146 5.54 6.563 6.434 3.29933 4.03249 3.19427 3.06139 12.993 13.712 14.612 15.552 14.213 14.713 NaN NaN NaN NaN NaN NaN 15.414 15.735 15.096 14.314 15.428 15.034 -23.5669 2.566 @:KKM3HP
Personal Products M3PP 29.354 27.722 25.661 23.82 26.746 25.726 -5.876 5.887 8.03 7.73 -4.99558 4.70902 3.19564 3.0815 13.384 14.172 15.31 16.494 14.689 15.272 NaN NaN NaN NaN NaN NaN 12.985 18.664 17.33 16.657 17.951 17.432 16 2.162 @:KKM3PP
Health Care Health Care Health Care M1HC 20.773 18.076 16.795 15.617 17.652 17.003 5.684 14.924 7.628 7.26 3.65464 1.2112 2.20176 2.1511 15.82 18.181 19.568 21.044 18.618 19.328 NaN NaN NaN NaN NaN NaN 14.201 13.127 12.059 11.091 12.766 12.225 9.2046 2.162 @:KKM1HC
Health Care Equipment & Services Health Care Equipment & Services M2HE 26.702 22.633 20.717 18.617 22.057 21.075 5.235 17.977 9.246 10.781 5.10067 1.259 2.24064 1.72683 28.196 33.264 36.34 40.44 34.132 35.723 NaN NaN NaN NaN NaN NaN 15.404 14.631 13.318 12.162 14.209 13.532 16.3949 1.215 @:KKM2HE
Health Care Equipment & Supplies M3HS 40.8 30.91 28.421 25.64 30.267 28.973 -2.203 31.996 8.759 10.518 -18.5202 0.966058 3.24478 2.43773 17.679 23.335 25.379 28.132 23.831 24.896 NaN NaN NaN NaN NaN NaN 24.441 20.84 18.854 17.352 20.268 19.238 19.0259 1.034 @:KKM3HS
Health Care Providers & Services M3PS 16.564 15.279 13.991 12.615 14.856 14.2 11.331 8.411 9.207 10.765 1.46183 1.81655 1.5196 1.17185 48.581 52.667 57.516 63.787 54.168 56.668 NaN NaN NaN NaN NaN NaN 9.902 10.143 9.292 8.386 9.845 9.405 18.7831 1.446 @:KKM3PS
Pharmaceuticals, Biotechnology & Life Sciences Pharmaceuticals, Biotechnology & Life Sciences M2PB 17.9 15.778 14.772 14.007 15.425 14.919 5.903 13.444 6.813 5.461 3.03236 1.17361 2.16821 2.56491 13.408 15.211 16.247 17.135 15.56 16.087 NaN NaN NaN NaN NaN NaN 13.471 12.253 11.316 10.445 11.925 11.457 2.2046 2.814 @:KKM2PB
Biotechnology M3BI 17.357 14.882 14.049 14.11 14.588 14.147 14.739 16.634 5.925 -0.431 1.17762 0.894674 2.37114 -32.7378 79.428 92.64 98.129 97.706 94.508 97.455 NaN NaN NaN NaN NaN NaN 13.374 11.588 10.52 9.693 11.22 10.669 -8.0729 3.459 @:KKM3BI
Pharmaceuticals M3PH 16.3 14.573 13.492 12.6 14.193 13.659 1.148 11.85 8.017 7.072 14.1986 1.22979 1.68292 1.78167 10.453 11.692 12.629 13.522 12.005 12.474 NaN NaN NaN NaN NaN NaN 12.577 11.538 10.589 9.911 11.204 10.736 -2.5591 3.029 @:KKM3PH
Financials Financials Financials M1FN 18.188 13.451 12.756 11.593 13.194 12.853 -21.036 35.304 5.408 10.197 -0.86461 0.381005 2.35873 1.1369 8.114 10.972 11.57 12.73 11.186 11.483 NaN NaN NaN NaN NaN NaN 10.416 11.49 10.478 10.368 11.883 11.666 22.0286 2.308 @:KKM1FN
Banks Banks M2B2 17.68 11.913 11.521 10.397 11.756 11.561 -34.349 48.413 3.399 10.811 -0.51472 0.24607 3.38953 0.961706 6.262 9.293 9.609 10.648 9.417 9.576 NaN NaN NaN NaN NaN NaN 6.124 17.066 5.678 5.159 16.844 16.52 30.6991 2.347 @:KKM2B2
M3B3 17.68 11.913 11.521 10.397 11.756 11.561 -34.349 48.413 3.399 10.811 -0.51472 0.24607 3.38953 0.961706 7.029 10.432 10.787 11.953 10.572 10.75 NaN NaN NaN NaN NaN NaN 6.124 17.066 5.678 5.159 16.843 16.518 30.6991 2.347 @:KKM3B3
Diversified Financials Diversified Financials M2D2 21.441 16.666 15.937 14.515 16.421 16.058 0.779 28.861 4.544 9.921 27.5237 0.577457 3.50726 1.46306 9.937 12.785 13.369 14.679 12.975 13.269 NaN NaN NaN NaN NaN NaN 13.125 11.68 12.407 12.471 12.45 12.366 27.7835 1.743 @:KKM2D2
Diversified Financial Services M3D3 22.08 22.003 20.207 19.422 21.441 20.502 -5.555 2.518 9.449 5.221 -3.9748 8.73828 2.13853 3.71998 8.472 8.501 9.257 9.632 8.725 9.124 NaN NaN NaN NaN NaN NaN 4.171 12.159 18.297 22.226 13.454 16.02 2.7778 2.205 @:KKM3D3
Insurance Insurance M2I2 15.604 13.018 11.77 10.817 12.563 11.956 -10.837 19.865 10.603 9.244 -1.43988 0.655323 1.11006 1.17016 8.936 10.712 11.847 12.891 11.1 11.664 NaN NaN NaN NaN NaN NaN 6.659 10.74 8.204 8.027 10.054 9.496 6.3123 2.946 @:KKM2I2
Insurance M3I3 15.604 13.018 11.77 10.817 12.563 11.956 -10.837 19.865 10.603 9.244 -1.43988 0.655323 1.11006 1.17016 8.936 10.712 11.847 12.891 11.1 11.664 NaN NaN NaN NaN NaN NaN 6.659 10.74 8.204 8.027 10.054 9.496 6.3123 2.946 @:KKM3I3
Real Estate Real Estate Real Estate M1RE 36.133 33.914 30.25 27.612 32.437 30.644 -21.715 6.544 12.112 10.911 -1.66397 5.18246 2.49752 2.53066 32.691 34.831 39.049 42.78 36.417 38.547 NaN NaN NaN NaN NaN NaN 20.855 20.721 19.281 18.252 20.155 19.459 5.9977 2.843 @:KKM1RE
Information Technology Information Technology Information Technology M1IT 37.748 30.039 26.845 24.37 28.335 26.841 6.814 25.662 11.9 10.227 5.53977 1.17056 2.25588 2.38291 13.597 17.086 19.12 21.061 18.114 19.122 NaN NaN NaN NaN NaN NaN 20.718 19.898 18.211 16.735 18.997 18.15 15.8019 1.057 @:KKM1IT
Software & Services Software & Services M2SS 45.52 38.507 33.759 29.245 36.136 33.62 6.832 18.212 14.065 15.399 6.66276 2.11438 2.40021 1.89915 12.943 15.3 17.452 20.145 16.304 17.524 NaN NaN NaN NaN NaN NaN 25.324 25.142 22.474 20.2 23.642 22.238 7.9109 1.047 @:KKM2SS
Internet Software & Services M3NS NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN @:KKM3NS
IT Consulting & Services M3IS 45.992 38.853 32.506 27.986 35.945 32.975 -10.357 18.375 19.524 16.287 -4.44067 2.11445 1.66493 1.7183 5.591 6.619 7.911 9.188 7.154 7.798 NaN NaN NaN NaN NaN NaN 24.436 24.713 21.993 19.288 23.406 22.188 5.2567 1.195 @:KKM3IS
Software M3SW 45.212 38.281 34.643 30.135 36.264 34.063 22.094 18.105 10.501 14.779 2.04635 2.11439 3.29902 2.03904 15.781 18.639 20.596 23.677 19.675 20.947 NaN NaN NaN NaN NaN NaN 26.156 25.777 23.112 21.106 24.093 22.568 10.1331 0.956 @:KKM3SW
Technology Hardware & Equipment Technology Hardware & Equipment M2TH 32.33 24.02 22.481 21.405 23.122 22.447 6.127 34.594 6.846 5.092 5.27664 0.69434 3.28382 4.20365 15.139 20.377 21.772 22.866 21.169 21.805 NaN NaN NaN NaN NaN NaN 17.952 15.71 15.234 14.301 15.477 15.217 25.4369 0.916 @:KKM2TH
Communications Equipment M3CE 17.311 17.305 15.71 14.667 16.446 15.718 5.552 0.039 10.154 7.105 3.11798 443.718 1.54717 2.06432 5.03 5.032 5.543 5.937 5.295 5.54 NaN NaN NaN NaN NaN NaN 9.622 10.848 9.912 9.363 10.398 9.973 14.8649 2.394 @:KKM3CE
Computers & Peripherals M3CP 36.664 25.09 23.742 22.894 24.225 23.66 8.251 46.13 5.676 4.095 4.44358 0.543898 4.18288 5.59072 39.11 57.151 60.395 62.632 59.191 60.606 NaN NaN NaN NaN NaN NaN 20.696 16.842 16.623 15.683 16.705 16.562 30.5263 0.695 @:KKM3CP
Electrical Equipment M3EE 39.488 29.788 25.659 22.997 27.976 26.015 -21.317 32.564 16.091 11.573 -1.85242 0.914752 1.59462 1.98713 12.121 16.069 18.654 20.813 17.109 18.399 NaN NaN NaN NaN NaN NaN 18.721 17.625 15.216 14.024 16.62 15.433 21.0191 1.802 @:KKM3EE
Semiconductors & Semiconductor Equipment M3SC 30.655 23.983 20.864 19.278 22.228 21.033 7.648 27.819 14.952 8.012 4.00824 0.862109 1.3954 2.40614 24.361 31.138 35.794 38.738 33.597 35.506 NaN NaN NaN NaN NaN NaN 15.988 16.402 14.498 13.561 15.426 14.597 29.7872 1.276 @:KKM3SC
Telecommunication Services Telecommunication Services Telecommunication Services M1T1 28.425 23.756 20.627 17.992 22.492 21.005 -1.625 19.657 15.171 14.691 -17.4923 1.20853 1.35963 1.2247 3.402 4.071 4.688 5.375 4.299 4.604 NaN NaN NaN NaN NaN NaN 11.184 11.288 9.766 9.564 10.704 9.97 10.5736 3.021 @:KKM1T1
M2T2 13.524 13.04 12.425 11.494 12.861 12.552 -5.337 3.716 4.944 7.867 -2.53401 3.50915 2.51315 1.46104 4.423 4.587 4.814 5.205 4.651 4.766 NaN NaN NaN NaN NaN NaN 6.605 6.709 6.655 6.245 6.7 6.673 0.7092 5.202 @:KKM2T2
Diversified Telecommunications Services M3DT 12.326 11.976 11.565 10.959 11.844 11.636 -5.364 2.917 3.558 5.12 -2.29791 4.10559 3.25042 2.14043 4.117 4.237 4.388 4.63 4.284 4.361 NaN NaN NaN NaN NaN NaN 6.442 6.606 6.565 6.184 6.595 6.574 -0.6148 5.195 @:KKM3DT
Wireless Telecommunication Services M3WT 27.564 24.378 20.363 15.335 23.369 21.351 -5.017 13.069 19.721 32.786 -5.49412 1.86533 1.03255 0.46773 3.953 4.47 5.351 7.105 4.663 5.103 NaN NaN NaN NaN NaN NaN 7.615 7.321 7.186 6.588 7.327 7.259 9.2105 5.277 @:KKM3WT
Utilities Utilities Utilities M1U1 19.71 18.857 17.477 16.657 18.396 17.707 -2.387 4.523 7.892 4.925 -8.25723 4.16914 2.21452 3.38213 8.694 9.087 9.804 10.287 9.315 9.677 NaN NaN NaN NaN NaN NaN 11.258 10.9 10.544 10.382 10.765 10.587 1.2915 3.526 @:KKM1U1
M2U2 19.71 18.857 17.477 16.657 18.396 17.707 -2.387 4.523 7.892 4.925 -8.25723 4.16914 2.21452 3.38213 8.694 9.087 9.804 10.287 9.315 9.677 NaN NaN NaN NaN NaN NaN 11.258 10.9 10.544 10.382 10.765 10.587 1.2915 3.526 @:KKM2U2
Electric Utilities M3EU 19.302 18.744 17.591 16.734 18.346 17.776 -2.881 2.978 6.556 5.117 -6.69976 6.29416 2.68319 3.27028 11.598 11.943 12.726 13.377 12.202 12.593 NaN NaN NaN NaN NaN NaN 11.176 11.036 10.71 10.517 10.924 10.763 -2.1544 3.527 @:KKM3EU
Gas Utilities M3GU 20.194 18.64 17.729 17.078 18.12 17.708 -1.761 8.335 5.142 3.808 -11.4673 2.23635 3.44788 4.48477 14.695 15.92 16.739 17.376 16.377 16.758 NaN NaN NaN NaN NaN NaN 11.167 11.171 10.845 10.579 10.987 10.84 6.7308 4.292 @:KKM3GU
Multi-Utilities M3MU 19.812 17.869 16.638 15.828 17.518 16.878 -0.234 10.874 7.398 5.115 -84.6667 1.64328 2.24899 3.09443 3.01 3.337 3.584 3.767 3.404 3.533 NaN NaN NaN NaN NaN NaN 11.306 10.295 10.087 9.898 10.186 10.077 5.414 3.583 @:KKM3MU
Water Utilities M3WU 29.442 27.446 24.938 24.373 26.912 25.648 -8.524 7.273 10.057 2.319 -3.45401 3.77368 2.47967 10.5101 16.443 17.639 19.413 19.863 17.989 18.876 NaN NaN NaN NaN NaN NaN 17.429 15.54 14.781 14.904 15.375 14.994 8.3333 2.455 @:KKM3WU

Now let's see our data-frame in the list:

 

 

 

      PE-Ratio Earnings Growth PEG-Ratio EPS Mean Risk premium EV/EBITDA Rev. Ratio Div Yield Tickers
        Fiscal Year Forward Fiscal Year Fiscal Year Fiscal Year Forward Fiscal Year Forward Fiscal Year Forward Rev. Ratio Div Yield Tickers
        FY0 FY1 FY2 FY3 12M 18M FY0 FY1 FY2 FY3 FY0 FY1 FY2 FY3 FY0 FY1 FY2 FY3 12M 18M FY0 FY1 FY2 FY3 12M 18M FY0 FY1 FY2 FY3 12M 18M Rev. Ratio Div Yield Tickers
Energy Energy Energy M1E1 460.023 16.258 13.12 12.335 15.046 13.549 -96.896 2729.53 23.914 6.369 -4.7476 0.005956 0.548633 1.93672 0.336 9.515 11.791 12.542 10.282 11.418 NaN NaN NaN NaN NaN NaN 9.515 6.273 5.54 5.25 6.011 5.652 15.0922 4.567 @:KKM1E1
M2E2 460.023 16.258 13.12 12.335 15.046 13.549 -96.896 2729.53 23.914 6.369 -4.7476 0.005956 0.548633 1.93672 0.336 9.515 11.791 12.542 10.282 11.418 NaN NaN NaN NaN NaN NaN 9.515 6.273 5.54 5.25 6.011 5.652 15.0922 4.567 @:KKM2E2
Energy Equipment & Services M3ES 48.738 24.336 16.978 12.999 21.264 17.879 -61.793 100.27 43.339 30.608 -0.78873 0.242705 0.391749 0.424693 1.914 3.834 5.495 7.177 4.387 5.218 NaN NaN NaN NaN NaN NaN 10.221 9.821 8.184 6.571 9.214 8.422 60 1.933 @:KKM3ES
Oil, Gas & Consumable Fuels M3OG 754.708 16.012 12.984 12.306 14.845 13.399 -98.128 4613.39 23.323 5.512 -7.69106 0.003471 0.556704 2.23258 0.216 10.202 12.582 13.275 11.004 12.192 NaN NaN NaN NaN NaN NaN 9.485 6.171 5.458 5.204 5.917 5.567 10.2171 4.692 @:KKM3OG
Materials Materials Materials M1M1 24.337 15.256 15.8 16.168 15.466 15.853 -0.406 59.526 -3.441 -2.37 -59.9433 0.256291 -4.59169 -6.82194 16.089 25.665 24.782 24.218 25.316 24.699 NaN NaN NaN NaN NaN NaN 9.202 7.408 7.765 7.937 7.556 7.769 18.7947 2.466 @:KKM1M1
M2M2 24.337 15.256 15.8 16.168 15.466 15.853 -0.406 59.526 -3.441 -2.37 -59.9433 0.256291 -4.59169 -6.82194 16.089 25.665 24.782 24.218 25.316 24.699 NaN NaN NaN NaN NaN NaN 9.202 7.408 7.765 7.937 7.556 7.769 18.7947 2.466 @:KKM2M2
Chemicals M3CH 30.134 22.245 20.789 19.053 21.712 21.001 -11.668 35.463 7.007 9.111 -2.58262 0.627273 2.96689 2.09121 16.695 22.616 24.2 26.405 23.171 23.956 NaN NaN NaN NaN NaN NaN 13.859 12.249 11.695 11.045 12.05 11.776 23.3813 1.995 @:KKM3CH
Construction Materials M3CM 20.782 17.937 16.01 14.567 17.245 16.302 -3.319 15.858 12.038 9.904 -6.26152 1.1311 1.32996 1.47082 13.536 15.683 17.571 19.311 16.312 17.256 NaN NaN NaN NaN NaN NaN 8.454 9.033 8.225 7.689 8.752 8.353 26.6055 2.156 @:KKM3CM
Containers & Packaging M3CT 21.836 18.241 16.117 14.806 17.247 16.267 -9.876 19.711 13.18 7.342 -2.21102 0.925422 1.22284 2.01662 16.238 19.439 22.001 23.949 20.56 21.798 NaN NaN NaN NaN NaN NaN 10.344 10.207 9.158 8.866 9.755 9.254 16.6667 2 @:KKM3CT
Metals & Mining M3MM 20.305 10.422 11.899 13.816 10.942 11.869 15.7 94.834 -12.412 -13.877 1.29331 0.109897 -0.95867 -0.9956 20.513 39.966 35.006 30.148 38.068 35.092 NaN NaN NaN NaN NaN NaN 6.593 4.943 5.55 6.002 5.173 5.521 7.6225 3.217 @:KKM3MM
Paper & Forest Products M3PF 21.168 14.034 16.437 16.372 14.753 15.981 -4.005 50.832 -14.619 0.397 -5.28539 0.276086 -1.12436 41.2393 9.832 14.829 12.661 12.711 14.106 13.023 NaN NaN NaN NaN NaN NaN 10.491 8.528 9.35 9.269 8.784 9.201 50 2.498 @:KKM3PF
Industrials Industrials Industrials M1ID 38.012 25.669 21.344 18.795 23.949 21.891 -32.919 48.085 20.323 13.077 -1.15471 0.533826 1.05024 1.43726 9.494 14.059 16.908 19.201 15.069 16.485 NaN NaN NaN NaN NaN NaN 15.635 14.22 12.389 11.402 13.514 12.63 23.5447 1.629 @:KKM1ID
Capital Goods Capital Goods M2CG 35.588 24.677 20.62 18.26 23.051 21.114 -35.761 44.217 19.677 13.021 -0.99516 0.558089 1.04792 1.40235 9.65 13.917 16.656 18.808 14.899 16.266 NaN NaN NaN NaN NaN NaN 14.874 14.13 12.239 11.201 13.395 12.476 22.0871 1.699 @:KKM2CG
Aerospace & Defense M3AD 60.095 25.637 19.173 16.342 23.01 19.987 -67.659 134.406 33.715 17.321 -0.8882 0.190743 0.568679 0.943479 8.239 19.312 25.823 30.295 21.517 24.771 NaN NaN NaN NaN NaN NaN 22.278 15.34 12.396 10.799 14.215 12.799 6.5527 1.45 @:KKM3AD
Building Products M3BP 27.988 23.267 20.783 18.933 22.249 21.052 -4.169 20.292 11.95 9.772 -6.71336 1.14661 1.73916 1.93747 12.157 14.624 16.371 17.971 15.292 16.162 NaN NaN NaN NaN NaN NaN 12.955 13.177 12.122 11.324 12.766 12.254 33.7121 1.412 @:KKM3BP
Construction & Engineering M3CN 29.554 20.199 15.902 14.193 18.53 16.486 -44.204 46.317 27.02 12.038 -0.66858 0.436103 0.588527 1.17902 16.039 23.468 29.809 33.398 25.582 28.753 NaN NaN NaN NaN NaN NaN 8.124 8.025 6.953 7.127 7.641 7.116 1.7544 2.972 @:KKM3CN
Electronic Equipment & Instruments M3EI 34.149 26.911 24.233 21.679 25.82 24.509 -6.623 26.896 11.049 9.805 -5.15612 1.00056 2.19323 2.21101 3.505 4.448 4.94 5.521 4.636 4.884 NaN NaN NaN NaN NaN NaN 15.629 15.039 13.917 12.775 14.612 14.035 28.8136 1.196 @:KKM3EI
Industrial Conglomerates M3IC 30.95 22.84 19.637 17.362 21.517 19.979 -33.445 35.507 16.311 13.54 -0.9254 0.643253 1.20391 1.28227 4.73 6.409 7.455 8.432 6.804 7.328 NaN NaN NaN NaN NaN NaN 11.825 14.08 12.15 10.731 13.265 12.345 25.7485 1.836 @:KKM3IC
Machinery M3MC 32.562 24.616 21.305 19.227 23.285 21.699 -22.564 32.28 15.542 10.806 -1.4431 0.762577 1.3708 1.77929 21.943 29.026 33.537 37.161 30.685 32.928 NaN NaN NaN NaN NaN NaN 15.024 14.263 12.787 12.251 13.689 12.969 31.4332 1.683 @:KKM3MC
Trading Companies & Distributors Industry M3TC 25.016 22.991 20.446 18.214 22.165 20.911 -1.684 8.81 12.449 12.25 -14.8551 2.60965 1.64238 1.48686 20.242 22.025 24.767 27.801 22.846 24.216 NaN NaN NaN NaN NaN NaN 10.657 11.443 10.381 9.289 11.086 10.558 13.3333 1.738 @:KKM3TC
Commercial Services & Supplies Commercial Services & Supplies M2C2 33.587 29.412 26.122 22.809 28.183 26.573 -3.289 14.194 12.597 12.324 -10.2119 2.07214 2.07367 1.85078 8.029 9.169 10.324 11.823 9.569 10.149 NaN NaN NaN NaN NaN NaN 17.198 16.23 14.534 13.315 15.649 14.811 25.1641 1.464 @:KKM2C2
Commercial Services & Supplies M3C3 35.924 31.59 28.387 24.785 30.3 28.735 1.769 13.722 11.284 12.573 20.3075 2.30214 2.51569 1.97129 6.758 7.686 8.553 9.796 8.013 8.449 NaN NaN NaN NaN NaN NaN 15.569 15.091 13.528 12.39 14.569 13.792 17.7305 1.336 @:KKM3C3
Transportation Transportation M2TR 53.824 27.13 21.459 18.841 24.86 22.217 -37.762 98.395 26.795 13.592 -1.42535 0.275725 0.800858 1.38618 9.784 19.411 24.541 27.951 21.183 23.703 NaN NaN NaN NaN NaN NaN 17.145 13.568 11.881 11.194 12.902 12.114 26.8634 1.493 @:KKM2TR
Air Freight & Couriers M3AF 23.481 18.544 17.43 16.622 18.362 17.807 23.379 26.624 6.391 4.861 1.00436 0.696514 2.72727 3.41946 13.206 16.721 17.79 18.655 16.887 17.413 NaN NaN NaN NaN NaN NaN 11.507 10.768 10.292 10.096 10.643 10.401 43.3735 1.649 @:KKM3AF
Airlines M3AL NaN NaN 20.079 9.507 NaN 38.894 -398.184 NaN NaN 90.2 NaN NaN NaN 0.105399 -44.106 -15.7 7.046 14.88 -6.955 3.637 NaN NaN NaN NaN NaN NaN -10.761 36.019 6.961 5.249 13.894 7.918 -7.2917 0.687 @:KKM3AL
Marine M3MA 22.851 11.016 14.868 13.704 12.057 14.049 172.952 107.444 -25.911 8.493 0.132123 0.102528 -0.57381 1.61356 21.273 44.131 32.696 35.473 40.319 34.602 NaN NaN NaN NaN NaN NaN 26.332 5.73 7.333 6.751 6.176 7.002 31.5789 1.928 @:KKM3MA
Road & Rail M3RR 39.396 28.293 24.028 21.123 26.807 24.654 15.396 39.242 18.475 13.755 2.55885 0.720988 1.30057 1.53566 26.717 37.202 43.804 49.83 39.265 42.693 NaN NaN NaN NaN NaN NaN 16.751 16.046 14.359 13.469 15.443 14.611 41.0569 1.433 @:KKM3RR
Transportation Infrastructure M3TI NaN 662.062 49.975 30.378 102.955 51.555 -146.422 NaN 1224.8 64.51 NaN NaN 0.040803 0.470904 -4.955 0.377 4.993 8.214 2.424 4.84 NaN NaN NaN NaN NaN NaN 25.948 18.467 14.374 12.932 16.441 14.66 -5.102 1.186 @:KKM3TI
Consumer Discretionary Consumer Discretionary Consumer Discretionary M1CD 58.928 33.173 25.395 21.756 30.087 26.429 -36.663 77.638 30.626 17.235 -1.60729 0.427278 0.829197 1.26232 7.852 13.949 18.221 21.269 15.379 17.508 NaN NaN NaN NaN NaN NaN 18.65 15.512 12.861 12.701 14.517 13.245 15.6538 1.296 @:KKM1CD
Automobiles & Components Automobiles & Components M2AC 51.593 19.646 15.871 14.223 18.203 16.396 -53.414 162.616 23.783 11.586 -0.96591 0.120812 0.667325 1.2276 6.271 16.467 20.384 22.745 17.773 19.731 NaN NaN NaN NaN NaN NaN 10.494 7.109 6 6.017 6.705 6.165 12.4352 1.098 @:KKM2AC
Auto Components M3AU 58.453 16.917 12.85 11.104 15.303 13.387 -72.618 245.535 31.644 15.725 -0.80494 0.068899 0.40608 0.706137 5.102 17.629 23.208 26.857 19.489 22.278 NaN NaN NaN NaN NaN NaN 9.347 7.252 6.229 5.701 6.879 6.38 9.0395 1.305 @:KKM3AU
Automobiles M3AM 50.573 20.206 16.539 14.945 18.816 17.055 -47.99 150.287 22.169 10.671 -1.05382 0.134449 0.746042 1.40052 6.077 15.21 18.582 20.564 16.334 18.02 NaN NaN NaN NaN NaN NaN 10.734 7.074 5.945 6.091 6.663 6.113 15.311 1.039 @:KKM3AM
Consumer Durables & Apparel Consumer Durables & Apparel M2CA 39.496 24.894 21.827 19.543 23.978 22.45 -17.331 58.657 14.053 12.841 -2.27892 0.424399 1.55319 1.52192 10.379 16.467 18.781 20.975 17.096 18.259 NaN NaN NaN NaN NaN NaN 17.608 14.899 13.523 20.34 14.542 13.896 24.3377 1.215 @:KKM2CA
Household Durables M3HD 16.499 11.858 11.062 9.949 11.498 11.118 5.999 39.14 7.193 9.284 2.75029 0.302964 1.53788 1.07163 12.093 16.826 18.036 20.055 17.353 17.945 NaN NaN NaN NaN NaN NaN 9.087 7.281 7.207 6.349 7.314 7.361 37.6744 2.044 @:KKM3HD
Leisure Equipment & Products M3LE 92.408 57.402 45.055 35.573 49.294 43.267 -8.333 60.984 27.405 26.655 -11.0894 0.941263 1.64404 1.33457 0.699 1.126 1.434 1.816 1.311 1.493 NaN NaN NaN NaN NaN NaN 27.108 36.642 31.144 25.152 33.198 29.71 9.3023 2.776 @:KKM3LE
Textiles & Apparel M3TA 60.762 34.127 28.674 24.988 32.813 30.05 -32.413 78.045 19.019 14.749 -1.87462 0.437273 1.50765 1.69422 18.035 32.111 38.218 43.854 33.396 36.467 NaN NaN NaN NaN NaN NaN 22.419 18.948 16.513 26.625 18.335 17.11 17.9191 0.995 @:KKM3TA
Hotels, Restaurants & Leisure Hotels, Restaurants & Leisure M2HR NaN 83.77 30.087 23.275 50.01 32.791 -116.019 NaN 178.421 29.266 NaN NaN 0.168629 0.795291 -2.802 4.683 13.038 16.854 7.844 11.963 NaN NaN NaN NaN NaN NaN 41.618 25.515 16.38 14.328 20.997 17.149 11.0818 1.122 @:KKM2HR
Hotels Restaurants & Leisure M3HR NaN 83.77 30.087 23.275 50.01 32.791 -116.019 NaN 178.421 29.266 NaN NaN 0.168629 0.795291 -3.069 5.13 14.282 18.462 8.592 13.104 NaN NaN NaN NaN NaN NaN 41.619 25.515 16.38 14.328 20.997 17.148 11.0818 1.122 @:KKM3HR
Media Media M2MD NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN @:KKM2MD
Media M3ME NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN @:KKM3ME
Retailing Retailing M2RT 46.823 39.315 32.45 27.415 36.962 33.604 21.338 19.096 21.156 19.192 2.19435 2.05881 1.53384 1.42846 20.305 24.182 29.298 34.679 25.722 28.293 NaN NaN NaN NaN NaN NaN 20.891 19.816 16.779 15.114 18.749 17.254 15.0235 1.578 @:KKM2RT
Distributors M3DI 25.655 22.032 20.206 19.126 21.388 20.489 5.732 16.447 9.035 5.645 4.47575 1.33958 2.23641 3.38813 5.995 6.982 7.612 8.042 7.192 7.507 NaN NaN NaN NaN NaN NaN 14.482 13.767 12.629 NaN 13.371 12.809 79.3103 1.626 @:KKM3DI
Internet & Catalog Retail M3NT 82.281 70.084 50.214 37.414 62.269 52.959 91.499 17.404 39.57 34.214 0.899256 4.02689 1.26899 1.09353 53.791 63.152 88.142 118.298 71.078 83.573 NaN NaN NaN NaN NaN NaN 30.253 27.479 20.878 17.578 24.935 21.79 -1.5748 1.155 @:KKM3NT
Multiline Retail M3MR 22.783 22.275 20.3 19.213 21.752 20.718 25.087 2.28 9.731 7.532 0.90816 9.76974 2.08612 2.55085 17.945 18.354 20.14 21.279 18.796 19.733 NaN NaN NaN NaN NaN NaN 11.417 11.744 11.212 10.993 11.601 11.305 7.6923 1.453 @:KKM3MR
Specialty Retail M3SR 31.45 24.688 21.866 19.79 23.831 22.428 -4.976 27.39 12.908 10.487 -6.32034 0.901351 1.69399 1.8871 14.657 18.672 21.082 23.293 19.344 20.554 NaN NaN NaN NaN NaN NaN 15.747 14.874 13.839 12.946 14.569 14.042 23.0047 1.64 @:KKM3SR
Consumer Staples Consumer Staples Consumer Staples M1CS 22.224 20.903 19.214 17.937 20.148 19.343 -2.068 6.321 8.789 7.646 -10.7466 3.30691 2.18614 2.34593 12.453 13.24 14.404 15.429 13.736 14.308 NaN NaN NaN NaN NaN NaN 12.989 13.258 12.341 11.988 12.875 12.461 5.7784 2.653 @:KKM1CS
Food & Staples Retailing Food & Staples Retailing M2FD 21.674 21.304 19.216 18.101 20.18 19.315 1.165 1.739 10.865 8.023 18.6043 12.2507 1.76861 2.25614 7.408 7.537 8.355 8.87 7.956 8.313 NaN NaN NaN NaN NaN NaN 9.623 9.844 8.854 9.196 9.412 9.052 2.0772 1.943 @:KKM2FD
Food & Staples Retailing M3FD 21.674 21.304 19.216 18.101 20.18 19.315 1.165 1.739 10.865 8.023 18.6043 12.2507 1.76861 2.25614 7.408 7.537 8.355 8.87 7.956 8.313 NaN NaN NaN NaN NaN NaN 9.623 9.844 8.854 9.196 9.412 9.052 2.0772 1.943 @:KKM3FD
Food Beverage & Tobacco Food Beverage & Tobacco M2FB 21.252 19.677 18.085 16.805 19.059 18.283 -4.647 8 8.807 7.824 -4.57327 2.45962 2.05348 2.14788 14.98 16.178 17.603 18.943 16.703 17.412 NaN NaN NaN NaN NaN NaN 13.968 13.556 12.651 12.024 13.214 12.775 11.2885 2.988 @:KKM2FB
Beverages M3BV 28.699 25.411 22.808 20.836 24.288 23.05 -12.886 12.94 11.409 9.469 -2.22715 1.96376 1.99912 2.20044 10.879 12.287 13.689 14.985 12.855 13.546 NaN NaN NaN NaN NaN NaN 17.363 16.471 14.985 14.325 15.858 15.148 13.8667 2.268 @:KKM3BV
Food Products M3FP 23.178 21.801 20.185 19.155 21.209 20.418 -2.089 6.313 8.008 6.433 -11.0953 3.45335 2.5206 2.97762 13.16 13.991 15.111 15.924 14.382 14.938 NaN NaN NaN NaN NaN NaN 14.535 13.866 13.12 12.759 13.607 13.246 7.7295 2.297 @:KKM3FP
Tobacco M3TB 11.53 10.933 10.2 9.459 10.673 10.307 1.092 5.464 7.183 7.831 10.5586 2.00092 1.42002 1.20789 31.013 32.707 35.056 37.801 33.501 34.693 NaN NaN NaN NaN NaN NaN 9.075 9.434 8.923 8.336 9.254 8.998 17.0455 6.461 @:KKM3TB
Household & Personal Products Household & Personal Products M2HH 25.369 24.013 22.438 21.001 23.167 22.35 2.737 5.647 7.019 6.841 9.26891 4.25235 3.19675 3.06987 12.939 13.67 14.63 15.63 14.169 14.687 NaN NaN NaN NaN NaN NaN 14.612 16.74 15.872 15.13 16.299 15.865 -8.1712 2.421 @:KKM2HH
Household Products M3HP 23.577 22.34 20.964 19.697 21.553 20.821 7.146 5.54 6.563 6.434 3.29933 4.03249 3.19427 3.06139 12.993 13.712 14.612 15.552 14.213 14.713 NaN NaN NaN NaN NaN NaN 15.414 15.735 15.096 14.314 15.428 15.034 -23.5669 2.566 @:KKM3HP
Personal Products M3PP 29.354 27.722 25.661 23.82 26.746 25.726 -5.876 5.887 8.03 7.73 -4.99558 4.70902 3.19564 3.0815 13.384 14.172 15.31 16.494 14.689 15.272 NaN NaN NaN NaN NaN NaN 12.985 18.664 17.33 16.657 17.951 17.432 16 2.162 @:KKM3PP
Health Care Health Care Health Care M1HC 20.773 18.076 16.795 15.617 17.652 17.003 5.684 14.924 7.628 7.26 3.65464 1.2112 2.20176 2.1511 15.82 18.181 19.568 21.044 18.618 19.328 NaN NaN NaN NaN NaN NaN 14.201 13.127 12.059 11.091 12.766 12.225 9.2046 2.162 @:KKM1HC
Health Care Equipment & Services Health Care Equipment & Services M2HE 26.702 22.633 20.717 18.617 22.057 21.075 5.235 17.977 9.246 10.781 5.10067 1.259 2.24064 1.72683 28.196 33.264 36.34 40.44 34.132 35.723 NaN NaN NaN NaN NaN NaN 15.404 14.631 13.318 12.162 14.209 13.532 16.3949 1.215 @:KKM2HE
Health Care Equipment & Supplies M3HS 40.8 30.91 28.421 25.64 30.267 28.973 -2.203 31.996 8.759 10.518 -18.5202 0.966058 3.24478 2.43773 17.679 23.335 25.379 28.132 23.831 24.896 NaN NaN NaN NaN NaN NaN 24.441 20.84 18.854 17.352 20.268 19.238 19.0259 1.034 @:KKM3HS
Health Care Providers & Services M3PS 16.564 15.279 13.991 12.615 14.856 14.2 11.331 8.411 9.207 10.765 1.46183 1.81655 1.5196 1.17185 48.581 52.667 57.516 63.787 54.168 56.668 NaN NaN NaN NaN NaN NaN 9.902 10.143 9.292 8.386 9.845 9.405 18.7831 1.446 @:KKM3PS
Pharmaceuticals, Biotechnology & Life Sciences Pharmaceuticals, Biotechnology & Life Sciences M2PB 17.9 15.778 14.772 14.007 15.425 14.919 5.903 13.444 6.813 5.461 3.03236 1.17361 2.16821 2.56491 13.408 15.211 16.247 17.135 15.56 16.087 NaN NaN NaN NaN NaN NaN 13.471 12.253 11.316 10.445 11.925 11.457 2.2046 2.814 @:KKM2PB
Biotechnology M3BI 17.357 14.882 14.049 14.11 14.588 14.147 14.739 16.634 5.925 -0.431 1.17762 0.894674 2.37114 -32.7378 79.428 92.64 98.129 97.706 94.508 97.455 NaN NaN NaN NaN NaN NaN 13.374 11.588 10.52 9.693 11.22 10.669 -8.0729 3.459 @:KKM3BI
Pharmaceuticals M3PH 16.3 14.573 13.492 12.6 14.193 13.659 1.148 11.85 8.017 7.072 14.1986 1.22979 1.68292 1.78167 10.453 11.692 12.629 13.522 12.005 12.474 NaN NaN NaN NaN NaN NaN 12.577 11.538 10.589 9.911 11.204 10.736 -2.5591 3.029 @:KKM3PH
Financials Financials Financials M1FN 18.188 13.451 12.756 11.593 13.194 12.853 -21.036 35.304 5.408 10.197 -0.86461 0.381005 2.35873 1.1369 8.114 10.972 11.57 12.73 11.186 11.483 NaN NaN NaN NaN NaN NaN 10.416 11.49 10.478 10.368 11.883 11.666 22.0286 2.308 @:KKM1FN
Banks Banks M2B2 17.68 11.913 11.521 10.397 11.756 11.561 -34.349 48.413 3.399 10.811 -0.51472 0.24607 3.38953 0.961706 6.262 9.293 9.609 10.648 9.417 9.576 NaN NaN NaN NaN NaN NaN 6.124 17.066 5.678 5.159 16.844 16.52 30.6991 2.347 @:KKM2B2
M3B3 17.68 11.913 11.521 10.397 11.756 11.561 -34.349 48.413 3.399 10.811 -0.51472 0.24607 3.38953 0.961706 7.029 10.432 10.787 11.953 10.572 10.75 NaN NaN NaN NaN NaN NaN 6.124 17.066 5.678 5.159 16.843 16.518 30.6991 2.347 @:KKM3B3
Diversified Financials Diversified Financials M2D2 21.441 16.666 15.937 14.515 16.421 16.058 0.779 28.861 4.544 9.921 27.5237 0.577457 3.50726 1.46306 9.937 12.785 13.369 14.679 12.975 13.269 NaN NaN NaN NaN NaN NaN 13.125 11.68 12.407 12.471 12.45 12.366 27.7835 1.743 @:KKM2D2
Diversified Financial Services M3D3 22.08 22.003 20.207 19.422 21.441 20.502 -5.555 2.518 9.449 5.221 -3.9748 8.73828 2.13853 3.71998 8.472 8.501 9.257 9.632 8.725 9.124 NaN NaN NaN NaN NaN NaN 4.171 12.159 18.297 22.226 13.454 16.02 2.7778 2.205 @:KKM3D3
Insurance Insurance M2I2 15.604 13.018 11.77 10.817 12.563 11.956 -10.837 19.865 10.603 9.244 -1.43988 0.655323 1.11006 1.17016 8.936 10.712 11.847 12.891 11.1 11.664 NaN NaN NaN NaN NaN NaN 6.659 10.74 8.204 8.027 10.054 9.496 6.3123 2.946 @:KKM2I2
Insurance M3I3 15.604 13.018 11.77 10.817 12.563 11.956 -10.837 19.865 10.603 9.244 -1.43988 0.655323 1.11006 1.17016 8.936 10.712 11.847 12.891 11.1 11.664 NaN NaN NaN NaN NaN NaN 6.659 10.74 8.204 8.027 10.054 9.496 6.3123 2.946 @:KKM3I3
Real Estate Real Estate Real Estate M1RE 36.133 33.914 30.25 27.612 32.437 30.644 -21.715 6.544 12.112 10.911 -1.66397 5.18246 2.49752 2.53066 32.691 34.831 39.049 42.78 36.417 38.547 NaN NaN NaN NaN NaN NaN 20.855 20.721 19.281 18.252 20.155 19.459 5.9977 2.843 @:KKM1RE
Information Technology Information Technology Information Technology M1IT 37.748 30.039 26.845 24.37 28.335 26.841 6.814 25.662 11.9 10.227 5.53977 1.17056 2.25588 2.38291 13.597 17.086 19.12 21.061 18.114 19.122 NaN NaN NaN NaN NaN NaN 20.718 19.898 18.211 16.735 18.997 18.15 15.8019 1.057 @:KKM1IT
Software & Services Software & Services M2SS 45.52 38.507 33.759 29.245 36.136 33.62 6.832 18.212 14.065 15.399 6.66276 2.11438 2.40021 1.89915 12.943 15.3 17.452 20.145 16.304 17.524 NaN NaN NaN NaN NaN NaN 25.324 25.142 22.474 20.2 23.642 22.238 7.9109 1.047 @:KKM2SS
Internet Software & Services M3NS NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN @:KKM3NS
IT Consulting & Services M3IS 45.992 38.853 32.506 27.986 35.945 32.975 -10.357 18.375 19.524 16.287 -4.44067 2.11445 1.66493 1.7183 5.591 6.619 7.911 9.188 7.154 7.798 NaN NaN NaN NaN NaN NaN 24.436 24.713 21.993 19.288 23.406 22.188 5.2567 1.195 @:KKM3IS
Software M3SW 45.212 38.281 34.643 30.135 36.264 34.063 22.094 18.105 10.501 14.779 2.04635 2.11439 3.29902 2.03904 15.781 18.639 20.596 23.677 19.675 20.947 NaN NaN NaN NaN NaN NaN 26.156 25.777 23.112 21.106 24.093 22.568 10.1331 0.956 @:KKM3SW
Technology Hardware & Equipment Technology Hardware & Equipment M2TH 32.33 24.02 22.481 21.405 23.122 22.447 6.127 34.594 6.846 5.092 5.27664 0.69434 3.28382 4.20365 15.139 20.377 21.772 22.866 21.169 21.805 NaN NaN NaN NaN NaN NaN 17.952 15.71 15.234 14.301 15.477 15.217 25.4369 0.916 @:KKM2TH
Communications Equipment M3CE 17.311 17.305 15.71 14.667 16.446 15.718 5.552 0.039 10.154 7.105 3.11798 443.718 1.54717 2.06432 5.03 5.032 5.543 5.937 5.295 5.54 NaN NaN NaN NaN NaN NaN 9.622 10.848 9.912 9.363 10.398 9.973 14.8649 2.394 @:KKM3CE
Computers & Peripherals M3CP 36.664 25.09 23.742 22.894 24.225 23.66 8.251 46.13 5.676 4.095 4.44358 0.543898 4.18288 5.59072 39.11 57.151 60.395 62.632 59.191 60.606 NaN NaN NaN NaN NaN NaN 20.696 16.842 16.623 15.683 16.705 16.562 30.5263 0.695 @:KKM3CP
Electrical Equipment M3EE 39.488 29.788 25.659 22.997 27.976 26.015 -21.317 32.564 16.091 11.573 -1.85242 0.914752 1.59462 1.98713 12.121 16.069 18.654 20.813 17.109 18.399 NaN NaN NaN NaN NaN NaN 18.721 17.625 15.216 14.024 16.62 15.433 21.0191 1.802 @:KKM3EE
Semiconductors & Semiconductor Equipment M3SC 30.655 23.983 20.864 19.278 22.228 21.033 7.648 27.819 14.952 8.012 4.00824 0.862109 1.3954 2.40614 24.361 31.138 35.794 38.738 33.597 35.506 NaN NaN NaN NaN NaN NaN 15.988 16.402 14.498 13.561 15.426 14.597 29.7872 1.276 @:KKM3SC
Telecommunication Services Telecommunication Services Telecommunication Services M1T1 28.425 23.756 20.627 17.992 22.492 21.005 -1.625 19.657 15.171 14.691 -17.4923 1.20853 1.35963 1.2247 3.402 4.071 4.688 5.375 4.299 4.604 NaN NaN NaN NaN NaN NaN 11.184 11.288 9.766 9.564 10.704 9.97 10.5736 3.021 @:KKM1T1
M2T2 13.524 13.04 12.425 11.494 12.861 12.552 -5.337 3.716 4.944 7.867 -2.53401 3.50915 2.51315 1.46104 4.423 4.587 4.814 5.205 4.651 4.766 NaN NaN NaN NaN NaN NaN 6.605 6.709 6.655 6.245 6.7 6.673 0.7092 5.202 @:KKM2T2
Diversified Telecommunications Services M3DT 12.326 11.976 11.565 10.959 11.844 11.636 -5.364 2.917 3.558 5.12 -2.29791 4.10559 3.25042 2.14043 4.117 4.237 4.388 4.63 4.284 4.361 NaN NaN NaN NaN NaN NaN 6.442 6.606 6.565 6.184 6.595 6.574 -0.6148 5.195 @:KKM3DT
Wireless Telecommunication Services M3WT 27.564 24.378 20.363 15.335 23.369 21.351 -5.017 13.069 19.721 32.786 -5.49412 1.86533 1.03255 0.46773 3.953 4.47 5.351 7.105 4.663 5.103 NaN NaN NaN NaN NaN NaN 7.615 7.321 7.186 6.588 7.327 7.259 9.2105 5.277 @:KKM3WT
Utilities Utilities Utilities M1U1 19.71 18.857 17.477 16.657 18.396 17.707 -2.387 4.523 7.892 4.925 -8.25723 4.16914 2.21452 3.38213 8.694 9.087 9.804 10.287 9.315 9.677 NaN NaN NaN NaN NaN NaN 11.258 10.9 10.544 10.382 10.765 10.587 1.2915 3.526 @:KKM1U1
M2U2 19.71 18.857 17.477 16.657 18.396 17.707 -2.387 4.523 7.892 4.925 -8.25723 4.16914 2.21452 3.38213 8.694 9.087 9.804 10.287 9.315 9.677 NaN NaN NaN NaN NaN NaN 11.258 10.9 10.544 10.382 10.765 10.587 1.2915 3.526 @:KKM2U2
Electric Utilities M3EU 19.302 18.744 17.591 16.734 18.346 17.776 -2.881 2.978 6.556 5.117 -6.69976 6.29416 2.68319 3.27028 11.598 11.943 12.726 13.377 12.202 12.593 NaN NaN NaN NaN NaN NaN 11.176 11.036 10.71 10.517 10.924 10.763 -2.1544 3.527 @:KKM3EU
Gas Utilities M3GU 20.194 18.64 17.729 17.078 18.12 17.708 -1.761 8.335 5.142 3.808 -11.4673 2.23635 3.44788 4.48477 14.695 15.92 16.739 17.376 16.377 16.758 NaN NaN NaN NaN NaN NaN 11.167 11.171 10.845 10.579 10.987 10.84 6.7308 4.292 @:KKM3GU
Multi-Utilities M3MU 19.812 17.869 16.638 15.828 17.518 16.878 -0.234 10.874 7.398 5.115 -84.6667 1.64328 2.24899 3.09443 3.01 3.337 3.584 3.767 3.404 3.533 NaN NaN NaN NaN NaN NaN 11.306 10.295 10.087 9.898 10.186 10.077 5.414 3.583 @:KKM3MU
Water Utilities M3WU 29.442 27.446 24.938 24.373 26.912 25.648 -8.524 7.273 10.057 2.319 -3.45401 3.77368 2.47967 10.5101 16.443 17.639 19.413 19.863 17.989 18.876 NaN NaN NaN NaN NaN NaN 17.429 15.54 14.781 14.904 15.375 14.994 8.3333 2.455 @:KKM3WU

Conclusion

One can easily use interactive widgets to intuitively get dsws IBES GA data using our Python Get_IBES_GA function created above. We can even generate excel sheets replicating the 'Datastream IBES Global Aggregate MSCI.xlsm' file. However, this is only Part 1; I will attempt to see the best ways in which the above can be used to extract insights, possibly in graphical ways. If you have a workflow in mind for which the above would be useful, I would be happy to hear about it. Please do not hesitate to submit your propositions to jonathan.legrand@refinitiv.com

References

  • Login
  • Please Login
Contact Us MyRefinitiv