
RTSDK C/C++ v2.2.0.L1 Installation Guide
RTSC220IP.240

RTSDK C/C++ 2.2.0.L1

INSTALLATION GUIDE

1 Overview
RTSDK packages are specific to the product language (C/C++, C#, or Java) and include both the Enterprise Transport API
and Enterprise Message API products. This guide describes the procedures to install and build RTSDK C / C++, applying to
RTSDK versions 2.0.1.L1 and higher. Because installation steps are specific to the RTSDK as a whole, the instructions apply
to both Enterprise Transport and Enterprise Message APIs.

The RTSDK supports open sourcing and uses standards-based, freely-available open source tools to provide additional
flexibility and benefit.

Developers must use CMake to dynamically generate the build files.

2 Requirements and Limitations
• The RTSDK C/C++ package uses Google Test in its unit tests. While the RTSDK automatically downloads Google Test

whenever you run its unit tests, Google Test requires Python. So if you want to run the RTSDK unit tests, you must ensure
you also have Python on your machine.

• The RTSDK C/C++ package requires CMake.

• Refinitiv does not support 32-bit builds in the Enterprise Message API.

• If you intend to use encrypted connections, you must also install openSSL.

• If you downloaded the RTSDK package from GitHub and run CMake, CMake automatically attempts to download needed
libraries from GitHub and build the RTSDK binary pack. Thus, you must have an Internet connection for CMake to
successfully download the binaries in this manner. Alternatively, you can manually clone the binaries (if running CMake on
a machine without Internet access). For details on manually cloning the binaries, refer to Section 3.

• C only: The RTSDK C/C++ package requires Python 3 to be installed.

Note: Version 1.2 (and later) RTSDK applications are more memory-use intensive when initializing the Enterprise Transport
API C library and when loading the dictionary.

RTSDK C/C++ v2.2.0.L1 Installation Guide 5
RTSC220IP.240

3 Obtaining the Package
You have the following options in obtaining the RTSDK:

• You can download the package from the Developer Community Portal at the following URL:
https://developers.refinitiv.com/en/api-catalog/refinitiv-real-time-opnsrc/rt-sdk-cc/downloads

• You can clone the RTSDK from the GitHub repository (at https://github.com/Refinitiv/Real-Time-SDK) by using the
following command:

With RTSDK version 1.4 and higher, the binary pack repository on GitHub is no longer updated. Refer to the preceding tip to
obtain the binary pack. To build versions prior to 1.4, you can manually clone the binary pack using the following command
(clone the binary pack into the Elektron-SDK-BinaryPack directory).

Note: RTSDK packages downloaded from the Developer Community Portal already contain the RTSDK binary pack and
prebuilt libraries for supported compilers and platforms.

git clone https://github.com/Refinitiv/Real-Time-SDK.git

Note: An RTSDK clone built using CMake will download the RTSDK binary pack on behalf of the user.

Tip: You can also download the source and binary pack from GitHub via the browser:

• Browse to the URL https://github.com/Refinitiv/Real-Time-SDK/releases

• Each release will have the following options listed beneath it’s release name:

• To download a compressed package, click zip or tar.gzip.

git clone https://github.com/Refinitiv/Elektron-SDK-BinaryPack.git

Note: You need to obtain the binary pack if you run CMake on a machine without access to GitHub via the Internet.

https://developers.refinitiv.com/en/api-catalog/refinitiv-real-time-opnsrc/rt-sdk-cc/downloads
https://github.com/Refinitiv/Real-Time-SDK
https://github.com/Refinitiv/Real-Time-SDK/releases

RTSDK C/C++ v2.2.0.L1 Installation Guide 6
RTSC220IP.240

4 Package Directory Changes
The following tables illustrates the RTSDK package directory structure of Version 1.1.3 as compared against the latest
directory structure (CMake directory changes were introduced in Version 1.2).

The installdb directory includes external libraries (including libcurl). Examples might need to set LD_LIBRARY_PATH for
Linux or make sure that the libraries are otherwise accessible for Windows (e.g., include the directory in %PATH%).

RTSDK C/C++ VERSION 1.1.3 PACKAGE RTSDK C/C++ 2.2.0.L1 PACKAGE

Prior to the version1.2 release, the RTSDK C/C++ package
used the following high-level structure (included here for the
sake of comparison):

The following diagram illustrates the top-level directory
structure for the RTSDK C/C++ 2.2.0.L1 release:

Table 1: RTSDK C/C++ Package Structures

RTSDK C/C++ v2.2.0.L1 Installation Guide 7
RTSC220IP.240

4.1 Starting in Version 1.2

• The CMake directory contains modules to support the CMake build harness.

• The RTSDK-BinaryPack presents libraries (prebuilt from non-open source code) as targets for the rest of the RTSDK to
use as linkable target objects. For details on accessing the binary pack, refer to the topic called Obtaining the Package.

• Previous libraries librsslRDM, librsslReactor, and librsslVAUtil are combined to a single library librsslVA.

• A new library librsslRelMcast is added (in RTSDK-BinaryPack/Cpp-C/Eta/Libs) to account for the shared reliable
multicast library. librsslRelMcast is dynamically loaded by librssl whenever Reliable Multicast transport is selected.

• DACS and ANSI libraries have been moved to directory RTSDK-BinaryPack/Cpp-C/Eta/Utils.

4.2 Starting in Version 1.3.1

Starting in version 1.3.1, ANSI is open-sourced:

• The ANSI library is located in Cpp-C/Eta/Libs.

• ANSI headers are located in Cpp-C/Eta/Include/ansi.

4.3 Starting in Version 1.5.0

RTSDK supports a WebSocket Transport and introduces support for either a RWF or JSON payload. Conversion from RWF to
JSON (and from JSON to RWF) is built into librssl and also available as a separate shared library.

RTSDK C/C++ v2.2.0.L1 Installation Guide 8
RTSC220IP.240

5 CMake
The RTSDK includes CMake configuration files (CMakeLists.txt) in strategic directories. You must use CMake to configure a
build tree. CMake generates cleaner, more concise build environment files that correspond to users’ platform and OS. In
addition, it enables the creation of build environments on platforms that users wish to leverage, even if unsupported by the
RTSDK product.

The RTSDK package includes a top-level, entry point for CMake (CMakeLists.txt), which CMake uses when you run the
program. From this master file, CMake processes all downstream CMakeLists.txt files in the source tree to generate
associated Solution and vcxproj files1 (on Windows), or Makefile files (on Linux) in a build directory that you specify. After
this process, you can then compile your RTSDK in the same way as previous RTSDK versions (i.e., by running Make on Linux
or by using Visual Studio on Windows). For details on configuring the RTSDK with CMake, refer to Section 5.5.

For both Windows and Linux, starting in Version 1.5.1 with the introduction of support for Visual Studio 2019, Refinitiv supports
only the use of CMake version 3.14 or greater. Starting with Version 2.0.8.L1, with the introduction of support for Visual Studio
2022, CMake version of 3.21 or later must be used. You can download CMake from https://cmake.org/download/.

1. CMake refers to such files as ‘targets’

https://cmake.org/download/

RTSDK C/C++ v2.2.0.L1 Installation Guide 9
RTSC220IP.240

5.1 Building with CMake on Windows

 To run CMake in a Windows environment:

1. Obtain the RTSDK (for details, refer to Section 3).

2. Extract the contents of the RTSDK package as needed.

3. Note the name of the top-level extracted directory (i.e., on Windows, the name might be something like
RTSDK1.3.0.L1.win.rrg or if this is a GitHub clone, the name might be RTSDK).

The name of this extracted directory is referred to as sourceDir for the remainder of this procedure.

4. In Windows Explorer, navigate to the directory that contains sourceDir.

5. Press and hold down SHIFT, right-click the directory, and in the context menu, click Open command window here.

6. Issue the command:

Where:

• --help outputs a list of available command options and generator types.

• sourceDir is the directory in which the top-level CMake entry point (CMakeLists.txt) resides. By default, when you
build using the Solution and vcxproj files, output is sent to directory specified in SourceDir.

• buildDir is the CMake directory where built binaries are stored. This directory is created if it does not exist.

• VisualStudioVersion is the Visual Studio version (e.g., Visual Studio 11 2012 Win64). Valid values for
VisualStudioVersion are:

- “Visual Studio 17 2022” -A x64
- "Visual Studio 16 2019" -A x64
- "Visual Studio 15 2017 Win64"
- "Visual Studio 14 2015 Win64"

• option is a command line option and its associated value (e.g., -DBUILD_EMA_UNIT_TESTS=OFF). You can control
aspects of how CMake builds the RTSDK by using command line options (for further details on the use of options,
refer to Section 5.4).

The cmake command builds all needed Solution and vcxproj files (and other related files) in the CMake build directory and
may be built using Visual Studio. Compiled output (after running make or from visual studio make) is located in its associated
source directories (i.e., example executables are in the Executables directory and libraries (e.g., libema.lib, librssl.lib) in
the Libs directory).

cmake --help | -HsourceDir -BbuildDir -G “VisualStudioVersion” [-Doption ...]

Note: • If you do not explicitly specify Win64, by default cmake builds the 32-bit version.

• A list of visual studio versions can be obtained by typing cmake --help

Note: Do not load individual project files from Visual Studio. You must first load the top-level solution file (rtsdk.sln in the
specified buildDir). After loading the full solution from rtsdk.sln, you can begin building individual projects.

RTSDK C/C++ v2.2.0.L1 Installation Guide 10
RTSC220IP.240

5.2 Building with CMake on Linux

Refinitiv uses the default gnu compiler provided by CMake and included in the Linux distribution (which builds in 64-bit; to build
in 32-bit, refer to the CMake command options in Section 5.4). For supported OS and compilers, refer to the Compatability
Matrix.

 To run CMake in a Linux environment:

1. Obtain the RTSDK (for details, refer to Section 3).

2. Extract the contents of the RTSDK package as needed.

3. Note the name of the top-level extracted directory (i.e., on Linux, the name might be something like
RTSDK1.3.0.L1.linux.rrg or if this a GitHub clone, the name might be RTSDK).

The name of this extracted directory is referred to as sourceDir for the remainder of this procedure.

4. At a command prompt (e.g., in a terminal window), issue the command from the directory immediately above sourceDir:

Where:

• sourceDir is the directory in which the top-level CMake entry point (CMakeLists.txt) resides. By default, when you
build using Makefile files, output is sent to directory specified in sourceDir.

• buildDir is the CMake binary directory (for the CMake build tree). This directory is created if it does not exist.

• option is a command line option and its associated value (e.g., -DBUILD_EMA_UNIT_TESTS=OFF). You can control
aspects of how CMake builds the RTSDK by using command line options (for further details on the use of options,
refer to Section 5.4).

The cmake command builds all needed Makefile files (and related dependencies) in the CMake build directory and may be
built using gmake/make. Compiled output is located in its associated source directories (i.e., example executables are in the
Executables directory and libraries (e.g., libema.lib, librssl.lib) in the Libs directory).

Note: For Linux builds with RedHat-based distributions (RHEL, CentOS, Oracle Linux), the CMake scripts require lsb_release
software. On Red Hat Enterprise Linux and CentOS, when logged in as root, you can install lsb_release using the following
command: yum install redhat-lsb-core

cmake -HsourceDir -BbuildDir [-Doption ...]

Note: By default, CMake builds the RTSDK using the optimized build option. For the debug version, instead issue the
command: cmake -HsourceDir -BbuildDir –DCMAKE_BUILD_TYPE=Debug

RTSDK C/C++ v2.2.0.L1 Installation Guide 11
RTSC220IP.240

5.3 Rebuilding Library Packages (for Use with Developer Portal Downloads)

The RTSDK package that you obtain outside of GitHub (i.e., the Developer Portal) contains prebuilt libraries. However. you
might run into use cases that require you to rebuild libraries and/or your RTSDK API package. In normal use cases, where you
simply need to build the package, refer to Section 5.1 (for building on Windows) and Section 5.2 (for building on Linux).

You can rebuild the RTSDK API libraries in the following ways:

• If you need to rebuild the Enterprise Transport or Message API libraries, add the following option to the command line
when building. This option also rebuilds the external packages from the tarballs included in the download cache (external/
dlcache):

• If you need to rebuild everything (including external packages), ensure you have access to the Internet (in case a package
needs to be downloaded during the build), and add the following option to the command line when building. This option
does not use tarballs included in the download cache (external/dlcache) for building the external packages.

For detailed information on the options included in this section, refer to Section 5.4.

-DRTSDK_OPT_BUILD_ETA_EMA_LIBRARIES:BOOL=ON

-DRTSDK_OPT_REBUILD_ALL:BOOL=ON

https://developers.refinitiv.com/en/api-catalog/refinitiv-real-time-opnsrc/rt-sdk-cc

RTSDK C/C++ v2.2.0.L1 Installation Guide 12
RTSC220IP.240

5.4 CMake Build Configuration Options

When running the CMake command, you can use any of the following options:

Tip: If you want to only build the Enterprise Transport API library, turn off the following options:
BUILD_ETA_APPLICATIONS, BUILD_EMA_LIBRARY, and BUILD_EMA_EXAMPLES

OPTION DESCRIPTION DEFAULT
SETTING

BUILD_RTSDK-BINARYPACK Downloads needed libraries (as a tarball) from GitHub and
builds the RTSDK-BinaryPack. To use this option, you
must have Internet access (with any proxies specified).
If you downloaded your package from the Developer
Community Portal, this option skips the tarball download
and simply builds the RTSDK-BinaryPack.

On

BUILD_EMA_DOXYGEN Builds the Enterprise Message API reference
documentation using Doxygen.

Off

BUILD_EMA_EXAMPLES Builds all programs in Cpp-C/Ema/Examples. Turning this
option off also turns off BUILD_EMA_PERFTOOLS,
BUILD_EMA_TRAINING, and BUILD_UNIT_TESTS.

On

BUILD_EMA_LIBRARY Builds with the Enterprise Message API library (libema) On

BUILD_EMA_PERFTOOLS Builds all programs in Cpp-C/Ema/Examples/Perftools On

BUILD_EMA_TRAINING Builds all programs in Cpp-C/Ema/Examples/Training On

BUILD_EMA_UNIT_TESTS Builds all unit tests for the Enterprise Message API
(located in
Cpp-C/Ema/Examples/Test/UnitTest).

On

BUILD_ETA_APPLICATIONS The top-level control option for all Enterprise Transport API
Applications. Turning this option off also turns off
BUILD_ETA_EXAMPLES, BUILD_ETA_PERFTOOLS, and
BUILD_ETA_TRAINING.

On

BUILD_ETA_DOXYGEN Builds Enterprise Transport API reference documentation
using Doxygen.

Off

BUILD_ETA_EXAMPLES Builds all programs in
Cpp-C/Eta/Applications/Examples

On

BUILD_ETA_PERFTOOLS Builds all programs in
Cpp-C/Eta/Applications/Perftools

On

BUILD_ETA_TRAINING Builds all programs in Cpp-C/Eta/Applications/Training On

BUILD_ETA_UNIT_TESTS Builds all unit tests for Enterprise Transport API (located in
Cpp-C/Eta/TestTools/UnitTests).

On

Table 2: CMake Command Options

https://developers.refinitiv.com/en
https://developers.refinitiv.com/en

RTSDK C/C++ v2.2.0.L1 Installation Guide 13
RTSC220IP.240

BUILD_UNIT_TESTS Builds all unit test programs for both the Enterprise
Message API (located in Cpp-C/Ema/Examples/Test/
UnitTest) and Enterprise Transport API (located in Cpp-C/
Eta/TestTools/UnitTests). Turning this option off also
turns off BUILD_EMA_UNIT_TESTS and
BUILD_ETA_UNIT_TESTS.

On

BUILD_32_BIT_ETA Forces a 32-bit build. This option builds only the Enterprise
Transport API and its examples that do not require the
Binary Pack (thus VA examples such as VACons, VAProv,
VANIProv, and WatchlistCons are not built). Also turns off
the Enterprise Message API and associated examples.

Off

Note: This is used only for forcing 32-bit Linux builds.

Tip: To force a 32-bit build in Windows, leave out the
Win64 specification in the generator statement.

RTSDK_OPT_BUILD_WITH_PREBUILT_ETA_
EMA_LIBRARIES

Available only if you downloaded the RTSDK from the
Developer Community Portal. This option sets CMake to
build the RTSDK package using prebuilt Enterprise
Transport API and Enterprise Message API libraries.
This option does not rebuild the libraries themselves.

ON

RTSDK_OPT_BUILD_ETA_EMA_LIBRARIES Available only if you downloaded the RTSDK from the
Developer Community Portal. This option sets CMake to
rebuild the Enterprise Transport and Message API
libraries, the examples, and the applications, and then
rebuild the RTSDK package. To build external project
libraries, CMake uses the tarballs from the local download
cache (dlcache) in the RTSDK distribution.

OFF

RTSDK_OPT_REBUILD_ALL Available only if you downloaded the RTSDK from the
Developer Community Portal. This option sets CMake to
rebuild the entire RTSDK distribution. To build external
project libraries, CMake downloads the tarballs from the
Internet. To use this option, you must have Internet access
(with any proxies specified).

OFF

OPTION DESCRIPTION DEFAULT
SETTING

Table 2: CMake Command Options

https://developers.refinitiv.com/en
https://developers.refinitiv.com/en
https://developers.refinitiv.com/en

RTSDK C/C++ v2.2.0.L1 Installation Guide 14
RTSC220IP.240

5.5 Customizing the CMake Configuration

To customize your CMake build, you must configure the CMakeCache.txt file in the build directory (buildDir). You can edit this
file using either a text editor (i.e., vi) or the appropriate CMake UI2. After configuring the CMakeCache.txt file, for ease of use,
Refinitiv recommends you use the UI to reconfigure the CMake build. For details on using the CMake UI, refer to CMake’s
documentation (https://cmake.org/cmake/help/v3.10/).

If you use a text editor to alter the cache. you can update your CMake build tree simply by running the command:

5.6 CMake Targets

Running CMake generates targets (conceptually this includes Visual Studio projects when running on Windows) that you can
compile individually. CMake lists RTSDK-specific targets in stdout.3 You can use CMake build configuration options to control
the specific set of RTSDK targets generated by CMake (for details, refer to Section 5.4).

For example, when setting BUILD_ETA_PERFTOOLS=ON (this is the default), CMake configures the following targets:

• ConsPerf_shared

• ConsPerf

• NIProvPerf_shared

• NIProvPerf

• ProvPerf_shared

• ProvPerf

• TransportPerf_shared

• TransportPerf

When the RTSDK successfully completes the CMake configuration, any target can be built directly if it is included with the
configuration (e.g., make ConsPerf).

2. On Windows, the UI is accessed through the cmake-gui.exe binary. On Linux, you access the UI via the cmake-gui and a curses interface via a
Linux shell with the ccmake command.

cmake -HsourceDir -BbuildDir

3. For non-RTSDK targets, refer to CMake’s documentation and broader CMake developer community (both accessed from https://cmake.org/docu-
mentation).

https://cmake.org/cmake/help/v3.10/
https://cmake.org/documentation
https://cmake.org/documentation

© 2018 - 2024 Refinitiv. All rights reserved.
Republication or redistribution of Refinitiv content, including by
framing or similar means, is prohibited without the prior written
consent of Refinitiv. 'Refinitiv' and the Refinitiv logo are
registered trademarks and trademarks of Refinitiv and its
affiliated companies.

RTSDK C/C++ v2.2.0.L1 Installation Guide
Document Version: 2.2.0
RTSC220IP.240

	1 Overview
	2 Requirements and Limitations
	3 Obtaining the Package
	4 Package Directory Changes
	4.1 Starting in Version 1.2
	4.2 Starting in Version 1.3.1
	4.3 Starting in Version 1.5.0

	5 CMake
	5.1 Building with CMake on Windows
	5.2 Building with CMake on Linux
	5.3 Rebuilding Library Packages (for Use with Developer Portal Downloads)
	5.4 CMake Build Configuration Options
	5.5 Customizing the CMake Configuration
	5.6 CMake Targets

