
Document Version: 3.8.0
Date of issue: April 2024
Document ID: EMAC380UMRDM.240

Full_Product_Name and
Version (e.g: ATS V1.5)

Enterprise Message API
C++ Edition
3.8.0.L1

REFINITIV DOMAIN MODEL USAGE GUIDE

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide ii
EMAC380UMRDM.240

Legal Information

© Refinitiv 2015 - 2024. All rights reserved.

Republication or redistribution of Refinitiv content, including by framing or similar means, is prohibited without the prior written consent of
Refinitiv. ‘Refinitiv’ and the Refinitiv logo are registered trademarks and trademarks of Refinitiv.

Any software, including but not limited to: the code, screen, structure, sequence, and organization thereof, and its documentation are
protected by national copyright laws and international treaty provisions. This manual is subject to U.S. and other national export regulations.

Refinitiv, by publishing this document, does not guarantee that any information contained herein is and will remain accurate or that use of the
information will ensure correct and faultless operation of the relevant service or equipment. Refinitiv, its agents, and its employees, shall not
be held liable to or through any user for any loss or damage whatsoever resulting from reliance on the information contained herein.

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide iii
EMAC380UMRDM.240

Contents

Contents

1 Introduction .. 1
1.1 About this Manual ... 1
1.2 Audience ... 1
1.3 Open Message Model ... 1
1.4 Refinitiv Wire Format... 1
1.5 JSON... 1
1.6 References.. 2
1.7 Documentation Feedback ... 2
1.8 Conventions .. 2

1.8.1 Typographic .. 2
1.8.2 General Transport API Syntax.. 3
1.8.3 Definitions and Standard Behaviors ... 3

1.9 Acronyms and Abbreviations .. 4

2 Domain Model Overview.. 5
2.1 What is a Domain Message Model? ... 5
2.2 Refinitiv Domain Models Vs User-Defined Models ... 5

2.2.1 Refinitiv Domain Models ... 5
2.2.2 User-Defined Domain Model .. 6
2.2.3 Domain Message Model Creation .. 6

2.3 Message Concepts ... 7
2.4 Consumer / Interactive Provider Initial Interaction .. 8
2.5 Sending and Receiving Content.. 9
2.6 General Enterprise Message API Concepts ... 10

2.6.1 Snapshot and Streaming Requests .. 10
2.6.2 Reissue Requests and Pause/Resume.. 10
2.6.3 Clearing the Cache on Refreshes... 11
2.6.4 Dynamic View... 11
2.6.5 Batch Request .. 11
2.6.6 Posting.. 11

3 Login Domain ... 12
3.1 Description .. 12
3.2 Usage.. 13

3.2.1 Login Request Message... 13
3.2.2 Login Request Elements... 14
3.2.3 Login Request Domain Representation.. 17
3.2.4 Login Refresh Message.. 18
3.2.5 Login Refresh Elements ... 20
3.2.6 Login Refresh Domain Representation... 24
3.2.7 Login Status Message .. 25
3.2.8 Login Status Elements.. 26
3.2.9 Login Status Domain Representation... 26
3.2.10 Login Update Message... 26
3.2.11 Login Close Message ... 27
3.2.12 Login Generic Message Use .. 27
3.2.13 Login Post Message ... 28
3.2.14 Login Ack Message .. 28

3.3 Data... 29
3.3.1 Login Refresh Message Payload.. 29
3.3.2 Login Generic Message Payloads .. 31

Contents

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide iv
EMAC380UMRDM.240

3.4 Special Semantics... 33
3.4.1 Login Direction.. 33
3.4.2 Initial Login.. 33
3.4.3 Multiple Logins.. 33
3.4.4 Group and Service Status... 33
3.4.5 Single Open and Allow Suspect Data Behavior.. 34

3.5 Specific Usage: RDF Direct Login... 35
3.6 Specific Usage: RDMS.. 35
3.7 Specific Usage: Login Credentials Update Feature .. 35

4 Source Directory Domain .. 36
4.1 Description .. 36
4.2 Usage.. 37

4.2.1 Source Directory Request Message ... 37
4.2.2 Source Directory Refresh Message.. 39
4.2.3 Source Directory Update Message... 40
4.2.4 Source Directory Status Message .. 41
4.2.5 Source Directory Generic Message.. 42

4.3 Data... 43
4.3.1 Source Directory Refresh and Update Payload.. 43
4.3.2 Source Directory ConsumerStatus Generic Message Payload .. 51

4.4 Special Semantics... 52
4.4.1 Multiple Streams... 52
4.4.2 Service IDs ... 52
4.4.3 ServiceState and AcceptingRequests .. 52
4.4.4 Service and Group Status Values... 53
4.4.5 Removing a Service.. 53
4.4.6 Automatic Request from Enterprise Message API Consumer.. 54
4.4.7 Client Requests Non-Existing Service Directory... 54

5 Dictionary Domain ... 55
5.1 Description .. 55
5.2 Decoding Field List Contents with Field and Enumerated Types Dictionaries.. 56
5.3 Usage.. 57

5.3.1 Dictionary Request Message.. 57
5.3.2 Dictionary Refresh Message... 58
5.3.3 Dictionary Status Message ... 59

5.4 Data... 60
5.4.1 Filter.. 60
5.4.2 Refresh Message Summary Data... 61
5.4.3 Response Message Payload .. 61
5.4.4 DictionaryId... 62

5.5 Field Dictionary ... 63
5.5.1 Field Dictionary Payload ... 63
5.5.2 Field Dictionary File Format.. 65
5.5.3 Specific Usage: RDF Direct and FieldDefinition Dictionary .. 69

5.6 Enumerated Types Dictionary... 70
5.6.1 Enumerated Types Dictionary Payload .. 70
5.6.2 Enumerated Types Dictionary File Format ... 72
5.6.3 Specific Usage: RDF Direct and EnumTable Dictionary... 74

5.7 Special Semantics... 75
5.7.1 DictionariesProvided and DictionariesUsed.. 75
5.7.2 Version Information... 75

5.8 Other Dictionary Types ... 76
5.9 Specific Usage: RDMS.. 76

Contents

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide v
EMAC380UMRDM.240

6 Market Price Domain.. 77
6.1 Description .. 77
6.2 Usage.. 77

6.2.1 Market Price Request Message.. 77
6.2.2 Market Price Refresh Message .. 79
6.2.3 Market Price Update Message ... 80
6.2.4 Market Price Status Message... 82
6.2.5 Market Price Post Message.. 82

6.3 Data: Response Message Payload... 83
6.4 Special Semantics... 84

6.4.1 Snapshots... 84
6.4.2 Ripple Fields ... 84

6.5 Specific Usage: RDF Direct MarketPrice .. 84
6.6 Specific Usage: Legacy Records .. 84

7 Market By Order Domain ... 85
7.1 Description .. 85
7.2 Usage.. 85

7.2.1 Market By Order Request Message ... 85
7.2.2 Market By Order Refresh Message .. 87
7.2.3 Market By Order Update Message ... 88
7.2.4 Market By Order Status Message... 90
7.2.5 Market By Order Post Message.. 90

7.3 Data... 91
7.3.1 Response Message Payload .. 91
7.3.2 Summary Data.. 92
7.3.3 MapEntry Contents ... 92

7.4 Special Semantics... 92
7.5 Specific Usage: RDF Direct and Response Message Payload... 92
7.6 Specific Usage: RDMS.. 93

8 Market By Price Domain .. 94
8.1 Description .. 94
8.2 Usage.. 94

8.2.1 Market By Price Request Message .. 94
8.2.2 Market By Price Refresh Message ... 95
8.2.3 Market By Price Update Message .. 97
8.2.4 Market By Price Status Message.. 98
8.2.5 Market By Price Post Message... 99

8.3 Data... 100
8.3.1 Response Message Payload .. 100
8.3.2 Summary Data.. 100
8.3.3 MapEntry.Key Contents.. 101

8.4 Special Semantics... 101
8.5 Specific Usage: RDF Direct and the Response Message Payload... 102
8.6 Specific Usage: RDMS.. 102

9 Market Maker Domain .. 103
9.1 Description .. 103
9.2 Usage.. 103

9.2.1 Market Maker Request Message.. 103
9.2.2 Market Maker Refresh Message... 105
9.2.3 Market Maker Update Message.. 106
9.2.4 Market Maker Status Message... 107

Contents

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide vi
EMAC380UMRDM.240

9.2.5 Market Maker Post Message .. 108
9.3 Data... 109

9.3.1 Response Message Payload .. 109
9.3.2 Summary Data.. 109
9.3.3 MapEntry Contents ... 109

9.4 Special Semantics... 110
9.5 Specific Usage: RDF Direct and the Response Message Payload... 110
9.6 Specific Usage: RDMS.. 111

10 Yield Curve Domain ... 112
10.1 Description .. 112
10.2 Usage.. 112

10.2.1 Yield Curve Request Message ... 112
10.2.2 Yield Curve Refresh Message .. 114
10.2.3 Yield Curve Update Message... 115
10.2.4 Yield Curve Status Message .. 116
10.2.5 Yield Curve Domain Post Message.. 117

10.3 Data... 118
10.3.1 Response Message Payload .. 118
10.3.2 Summary Data.. 119
10.3.3 Yield Curve Input and Output Entries ... 119

10.4 Special Semantics... 119
10.5 Specific Usage: ATS ... 119

11 Symbol List Domain... 120
11.1 Description .. 120
11.2 Usage.. 120

11.2.1 Symbol List Request Message ... 120
11.2.2 Symbol List Refresh Message .. 122
11.2.3 Symbol List Update Message... 123
11.2.4 Symbol List Status Message .. 124

11.3 Data: Response Message Payload... 125
11.4 Special Semantics... 125
11.5 Specific Usage .. 126

Appendix A ReqMsg Payload ... 127
A.1 View Definition ... 127
A.2 ItemList... 127
A.3 Symbol List Behaviors.. 128

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide vii
EMAC380UMRDM.240

Contents

Contents

Figure 1. Open Message Model Consumer and Interactive Provider Initial Interactions ... 8
Figure 2. General Domain Use... 9
Figure 3. Login Request Domain Representation Code Usage Example .. 17
Figure 4. Login Refresh Domain Representation Code Usage Example ... 24
Figure 5. Login Refresh Message Payload .. 29
Figure 6. Login Generic Message Payload .. 31
Figure 7. Source Directory Refresh and Update Message Payload... 43
Figure 8. Source Directory Generic Message Payload .. 51
Figure 9. FieldList Referencing Field Dictionary .. 56
Figure 10. FieldEntry Referencing an Enumerated Types Table.. 56
Figure 11. Field Dictionary Payload ... 63
Figure 12. Field Dictionary File Format Sample ... 65
Figure 13. Field Dictionary Tagged Attributes Sample... 65
Figure 14. Enumerated Types Dictionary Refresh Message Payload.. 70
Figure 15. MarketPrice Response Message Payload .. 83
Figure 16. MarketByOrder Response Message Payload ... 91
Figure 17. MarketByPrice Response Message Payload .. 100
Figure 18. MarketMaker Response Message Payload .. 109
Figure 19. Yield Curve Payload Example... 118
Figure 20. SymbolList Response Message Payload.. 125
Figure 21. SymbolList Request Message Payload Specifying Symbol List Behavior .. 128

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide viii
EMAC380UMRDM.240

Contents

Contents

Table 1: Acronyms and Abbreviations .. 4
Table 2: Refinitiv Domain Model Overview ... 5
Table 3: Message Concepts ... 7
Table 4: Configure Login Request Message... 13
Table 5: Login Request Message ... 13
Table 6: Login Request Attrib Elements ... 14
Table 7: Login Refresh Message .. 18
Table 8: Login Refresh Attrib Elements.. 20
Table 9: Login Status Message Member Use ... 25
Table 10: Login Status Attrib Elements .. 26
Table 11: Login Close Message Member Use .. 27
Table 12: RTT Login Generic Message Member Use... 27
Table 13: Vector.SummaryData’s ElementList Contents ... 30
Table 14: ElementList Contents .. 30
Table 15: MapEntry Elements.. 31
Table 16: ElementList ElementEntrys .. 32
Table 17: SingleOpen and AllowSuspectData Handling ... 34
Table 18: Source Directory Request Message ... 37
Table 19: Source Directory Refresh Message .. 39
Table 20: Source Directory Update Message ... 40
Table 21: Source Directory Status Message... 41
Table 22: Source Directory Generic Message .. 42
Table 23: Source Directory Map Contents... 43
Table 24: Source Directory MapEntry Filter Entries.. 44
Table 25: Source Directory Info Filter Entry Elements .. 45
Table 26: Source Directory State FilterEntry Elements ... 47
Table 27: Source Directory Group FilterEntry Elements.. 48
Table 28: Source Directory Load FilterEntry Elements.. 49
Table 29: Source Directory Data FilterEntry Elements.. 49
Table 30: Source Directory Link FilterEntry Map Contents.. 50
Table 31: Source Directory Generic Message MapEntry Elements .. 51
Table 32: ServiceState and AcceptingRequests... 52
Table 33: Dictionary Request Message .. 57
Table 34: Dictionary Refresh Message ... 58
Table 35: Dictionary Status Message ... 59
Table 36: Dictionary's Filter .. 60
Table 37: Dictionary Map.SummaryData .. 61
Table 38: Field Dictionary Element Entries ... 64
Table 39: Field Dictionary File Tag Information .. 66
Table 40: Field Dictionary File Column Names and ElementEntry Names .. 66
Table 41: Field Dictionary Type Keywords.. 67
Table 42: Marketfeed to Refinitiv Wire Format Mappings in RDMFieldDictionary .. 68
Table 43: Marketfeed to Refinitiv Wire Format Mappings in RDMFieldDictionary .. 69
Table 44: Element Entries Describing Each Enumerated Type Table .. 71
Table 45: Enumerated Type Dictionary File Tag Information.. 73
Table 46: Refinitiv Wire Format EnumType Dictionary File Format Reference Fields.. 74
Table 47: Refinitiv Wire Format EnumType Dictionary File Values .. 74
Table 48: Other Dictionary Types ... 76
Table 49: Market Price Request Message .. 77
Table 50: Market Price Refresh Message... 79
Table 51: Market Price Update Message.. 80

Contents

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide ix
EMAC380UMRDM.240

Table 52: Market Price Status Message ... 82
Table 53: Market By Order Request Message.. 85
Table 54: Market By Order Refresh Message... 87
Table 55: Market By Order Update Message.. 88
Table 56: Market By Order Status Message ... 90
Table 57: Market By Price Request Message... 94
Table 58: Market By Price Refresh Message.. 95
Table 59: Market By Price Update Message... 97
Table 60: Market By Price Status Message .. 98
Table 61: Market Maker Request Message .. 103
Table 62: Market Maker Refresh Message ... 105
Table 63: Market Maker Update Message .. 106
Table 64: Market Maker Status Message ... 107
Table 65: Yield Curve Request Message.. 112
Table 66: Yield Curve Refresh Message .. 114
Table 67: Yield Curve Update Message ... 115
Table 68: Yield Curve Status Message... 116
Table 69: Yield Curve Inputs and Outputs .. 119
Table 70: Symbol List Request Message.. 120
Table 71: Symbol List Refresh Message .. 122
Table 72: Symbol List Update Message ... 123
Table 73: Symbol List Status Message... 124
Table 74: View Definition in Payload... 127
Table 75: ItemList in Payload.. 127
Table 76: Request Message Payload for Symbol List Domain Specifying Symbol List Behaviors............................. 128
Table 77: :SymbolListBehaviors ElementEntry Contents... 129

1 Introduction

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 1
EMAC380UMRDM.240

1 Introduction

1.1 About this Manual

This manual describes how the Refinitiv Domain Models are defined in terms of the Open Message Model. Data conforming to Refinitiv
Domain Models are available via Refinitiv Real-Time Distribution System, Refinitiv Real-Time, and Refinitiv Data Feed Direct (RDF-D) using
the Enterprise Message API.

1.2 Audience

This guide is written for software developers who are familiar with the Enterprise Message API and want to develop Enterprise Message API-
based applications to access Refinitiv Domain Model-formatted data. Before reading this manual:

• Users should be familiar with Open Message Model concepts and types.

• It may be useful to read the Enterprise Message API C++ Edition Developers Guide and be familiar with the example applications
provided in the Enterprise Message API package.

1.3 Open Message Model

The Open Message Model is a collection of message header and data constructs. Some Open Message Model message header
constructs, such as the Update message, have implicit market logic associated with them while others, such as the Generic message, allow
for free-flowing bi-directional messaging. Open Message Model data constructs can be combined in various ways to model data that ranges
from simple (or flat) primitive types to complex multiple-level hierarchal data.

The layout and interpretation of any specific Open Message Model, also referred to as a domain model, is described within that model’s
definition and is not coupled with the API. The Open Message Model is the flexible tool that provides the building blocks to design and
produce domain models to meet the needs of the system and its users. The Enterprise Message API provides structural representations of
Open Message Model constructs and manages the Refinitiv Wire Format binary-encoded representation of the Open Message Model.
Enterprise Message API users can leverage the provided Open Message Model constructs to consume or provide Open Message Model
data throughout their Refinitiv Real-Time Distribution System.

1.4 Refinitiv Wire Format

Refinitiv Wire Format is the encoded representation of the Open Message Model. Refinitiv Wire Format is a highly-optimized, binary format
designed to reduce the cost of data distribution as compared to previous wire formats. Binary encoding represents data in the machine’s
native manner, enabling further use in calculations or data manipulations. Refinitiv Wire Format allows for serializing Open Message Model
message and data constructs in an efficient manner while still allowing rich content types. Refinitiv Wire Format can distribute field identifier-
value pair data, self-describing data, as well as more complex, nested hierarchal content.

1.5 JSON

As of RTSDK 2.0.1.L1, the Enterprise Message API supports WebSocket protocols including rssl.json.v2 and tr_json2 (though
Refinitiv intends to deprecate tr_json2 at some time in the future). For further details on WebSocket domain models, refer to the
WebSockets API protocol specification on GitHub at https://github.com/Refinitiv/websocket-api/blob/master/
WebsocketAPI_ProtocolSpecification.pdf.

https://github.com/Refinitiv/websocket-api/blob/master/WebsocketAPI_ProtocolSpecification.pdf
https://github.com/Refinitiv/websocket-api/blob/master/WebsocketAPI_ProtocolSpecification.pdf

1 Introduction

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 2
EMAC380UMRDM.240

1.6 References

For additional Enterprise Message API documentation, refer to:

• The Enterprise Message API C++ Edition Developers Guide

• The Enterprise Message API C++ Edition Reference Guide

• The Refinitiv Developer Community

1.7 Documentation Feedback

While we make every effort to ensure the documentation is accurate and up-to-date, if you notice any errors, or would like to see more
details on a particular topic, you have the following options:

• Send us your comments via email at ProductDocumentation@refinitiv.com.

• Mark up the PDF using the Comment feature in Adobe Reader. After adding your comments, you can submit the entire PDF to Refinitiv
by clicking Send File in the File menu. Use the ProductDocumentation@refinitiv.com address.

1.8 Conventions

1.8.1 Typographic
The Enterprise Message API uses the following typographical conventions:

• The Refinitiv Domain Models are described in terms of Open Message Model concepts. Images and XML example layouts are
provided as a reference in relevant sections.

• In-line structures, functions, and types are shown in orange, Lucida Console font.

• Parameters, filenames, and directories are shown in Bold font.

• Document titles and variable values are shown in italics.

• When included in the body of the text, new concepts are called out in Bold, Italics the first time they are mentioned.

• Longer code examples are shown in Courier New font against a gray background. For example:

https://developers.refinitiv.com/
mailto:productdocumentation@refinitiv.com
mailto:productdocumentation@refinitiv.com

1 Introduction

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 3
EMAC380UMRDM.240

1.8.2 General Transport API Syntax
The Enterprise Message API uses the following general API syntax conventions:

• Dot-separated notation indicates data available within a hierarchy. Each period can indicate a structure, a data memberName, an
entry, or an element name.

• StreamID values are assigned by the application and used across all domain models. Consumer applications assign positive
StreamID values when requesting content and interactive provider applications respond using the same StreamID. Non-
interactive provider applications assign negative StreamID values.

• Payload generically refers to the message payload.

• Integer constants are defined in all capital letters with underscores (e.g., MMT_MARKET_PRICE, SERVICE_INFO_ID). In the
Enterprise Message API, they can be found in the refinitiv::ema::rdm namespace and in the Access/Include/EmaRdm.h file.

• The names of Enterprise Message API FilterId values (e.g. SERVICE_INFO_ID) correspond to the flag value enumeration
defined for use with the message key’s ilter (e.g., SERVICE_INFO_FILTER). Names may be shortened for clarity (e.g.,
DirectoryInfo).

• The names of the data members correspond to the method names for both get/set in the Enterprise Message API interface, with the
get prefixes removed and the first character always upper case.

1.8.3 Definitions and Standard Behaviors
This Enterprise Message API manual uses the following terms and the API illustrates the following default behavior:

• Not Used means the attribute is not extensible; the Enterprise Message API may pass-on the information, however there is no
guarantee that the data will be passed through the network now or in the future. Use of a “Not Used” attribute may cause problems
when interacting with some components.

• Required means the data must be provided or set.

• Conditional means date might be required depending on a particular scenario or context. Refer to the description for specific
details.

• Recommended means the data is not strictly required, but should be provided or set by all applications.

• Optional means the data may be provided or set, but is not required. This data should be handled and understood by all
applications, even if not including it. When present, this information should be passed through the network.

• Extensible means the numeric ranges may have more values defined in the future. It means additional Elements can be added to
Element Lists.

• If data is not present, the Enterprise Message API assumes the default value.

• Generic message use is not supported within existing, defined Refinitiv Domain Models, except when explicitly defined.

• Posting is assumed to be supported within currently-defined Refinitiv Domain Models, except when otherwise indicated. Posting is
not supported on Source Directory and Dictionary domains. Posting within the Login domain must follow off-stream posting rules
and target a domain other than Login. Posting on any other allowed domains must follow on-stream posting rules and target that
specific domain. For further details about posting, refer to the Enterprise Message API C++ Edition Developers Guide.

1 Introduction

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 4
EMAC380UMRDM.240

1.9 Acronyms and Abbreviations

ACRONYM DEFINITION

ADH Refinitiv Real-Time Advanced Data Hub

ADS Refinitiv Real-Time Advanced Distribution Server

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ATS Refinitiv Real-Time Advanced Transformation Server

DACS Data Access Control System

DMM Domain Message Model

EMA Enterprise Message API

ETA Enterprise Transport API

OMM Open Message Model

QoS Quality of Service

RDF-D Refinitiv Datafeed Direct

RDM Refinitiv Domain Model

RDP Refintiiv Data Platform

RMTES Multi-lingual text encoding standard

RSSL Refinitiv Source Sink Library

RTT Round Trip Time; this definition is used for the round trip latency monitoring feature.

RWF Refinitiv Wire Format

TS1 Time Series One

Table 1: Acronyms and Abbreviations

2 Domain Model Overview

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 5
EMAC380UMRDM.240

2 Domain Model Overview

2.1 What is a Domain Message Model?

A Domain Message Model describes a specific arrangement of Open Message Model message and data constructs. A domain message
model will define any specialized behaviors associated with the domain or any specific meaning or semantics associated with data contained
in the message. Unless a domain model specifies otherwise, any implicit market logic associated with a message still applies (e.g. an
Update message indicates that any previously-received data also contained in the Update message is being modified).

2.2 Refinitiv Domain Models Vs User-Defined Models

2.2.1 Refinitiv Domain Models
A Refinitiv Domain Model is a domain message model typically provided or consumed by a Refinitiv product, such as the Refinitiv Real-Time
Distribution System, Refinitiv Data Feed Direct, or the Refinitiv Data Platform. Some currently-defined Refinitiv Domain Models allow for
authenticating to a provider (e.g. Login), exchanging field or enumeration dictionaries (e.g. Dictionary), and providing or consuming various
types of market data (e.g. Market Price, Market by Order, Market by Price). Refinitiv’s defined models have a domain value of less than 128.

The following table provides a high-level overview of the currently-available Refinitiv Domain Models. The following chapters provide more
detailed descriptions for each of these.

DOMAIN PURPOSE

Login Authenticates users and advertise/request features that are not specific to a particular domain.
Use of and support for this domain is required for all Open Message Model applications.
This is considered an administrative domain, content is required and expected by many Refinitiv
components and conformance to the domain model definition is expected.
For further details refer to Chapter 3, Login Domain.

Source Directory Advertises information about available services and their state, QoS, and capabilities. This domain also
conveys any group status and group merge information.
Interactive and non-Interactive Open Message Model provider applications require support for this
domain. Refinitiv strongly recommends that Open Message Model consumers request this domain.
This is considered an administrative domain, and many Refinitiv components expect and require content
to conform to the domain model definition.
For further details, refer to Chapter 4, Source Directory Domain.

Dictionary Provides dictionaries that may be needed when decoding data. Though use of the Dictionary domain is
optional, Refinitiv recommends that provider applications support the domain’s use.
Considered an administrative domain, content is required and expected by many Refinitiv components
and following the domain model definition is expected.
For further details refer to Chapter 5, Dictionary Domain.

Market Price Provides access to Level I market information such as trades, indicative quotes and top of book quotes.
Content includes information such as volume, bid, ask, net change, last price, high, and low.
For further details refer to Chapter 6, Market Price Domain.

Market By Order Provides access to Level II full order books. Contains a list of orders (keyed by the order IDs) with related
information such as price, whether it is a bid/ask order, size, quote time, and market maker identifier.
For further details refer to Chapter 7, Market By Order Domain

Market By Price Provides access to Level II market depth information. Contains a list of price points (keyed by that price
and the bid/ask side) with related information.
For further details refer to Chapter 8, Market By Price Domain.

Table 2: Refinitiv Domain Model Overview

2 Domain Model Overview

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 6
EMAC380UMRDM.240

2.2.2 User-Defined Domain Model
A User Defined Domain Model is a domain message model defined by a party other than Refinitiv. These may be defined to solve a
specific user or system need in a particular deployment which is not resolvable through the use of a Refinitiv Domain Model. Any user-
defined model must use a domain value between 128 and 255. If needed, domain model designers can work with Refinitiv to define their
models as standard Refinitiv Domain Models. This allows for the most seamless interoperability with future Refinitiv Domain Model
definitions and with other Refinitiv products.

2.2.3 Domain Message Model Creation
This document discusses Refinitiv Domain Models capable of flowing through the Enterprise Message API. Enterprise Message API users
can leverage the Open Message Model to create their own Domain Message Models in addition to those described in this document. When
defining a Domain Message Model, consider the following questions / points:

• Is a new Domain Message Model really needed, or can you express the data in terms of an existing Refinitiv Domain Model?

• The Domain Message Model should be well-defined. Following the design templates used in this document is a good approach. The
structure, properties, use cases, and limitations of the Domain Message Model should be specified.

• While the Open Message Model provides building blocks that can structure data in many ways, the semantics of said data must abide
by the rules of the Open Message Model. For example, custom Domain Message Models should follow the request, refresh, status, and
update semantics implicitly defined by those messages. If more flexible messaging is desired within a custom Domain Message Model,
it can be accomplished through the use of a generic message, which allows for more free-form bidirectional messaging after a stream is
established.

• DomainType values less than 128 are reserved for Refinitiv Domain Models. The DomainType of a custom Domain Message Model
must be between 128 and 255.

• You might want to work with Refinitiv to define a published Refinitiv Domain Model, rather than use a custom Domain Message Model.
This ensures the most seamless interoperability with future Refinitiv Domain Models and other Refinitiv products.

Market Maker Provides access to market maker quotes and trade information. Contains a list of market makers (keyed
by that market maker’s ID) with related information such as that market maker’s bid and asking prices,
quote time, and market source.
For further details refer to Chapter 9, Market Maker Domain.

Yield Curve Provides access to yield curve information. This can contain input information used to calculate a yield
curve along with output information (which is the curve itself). A yield curve shows the relation between
the interest rate and the term associated with the debt of a borrower. The curve’s shape can help to give
an idea of future economic activity and interest rates.
For further details refer to Chapter 10, Yield Curve Domain.

Symbol List Provides access to a set of symbol names, typically from an index, service, or cache. Minimally contains
symbol names and can optionally contain additional cross-reference information such as permission
information, name type, or other venue-specific content.
For further details refer to Chapter 11, Symbol List Domain.

DOMAIN PURPOSE

Table 2: Refinitiv Domain Model Overview (Continued)

2 Domain Model Overview

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 7
EMAC380UMRDM.240

2.3 Message Concepts

The following table describes the mapping of Open Message Model concepts with actual interfaces. For clarity and consistency, the
Message concept will be referenced throughout the rest of this Refinitiv Domain Model Usage Guide.

MESSAGE CONCEPT DESCRIPTION/VALUE

Request Message ReqMsg whose data type is DataType.ReqMsgEnum

Close Message
(Request)

OmmConsumer.unregister()

Refresh Message
(Response)

RefreshMsg whose data type is DataType.RefreshMsgEnum

Update Message
(Response)

UpdateMsg whose data type is DataType.UpdateMsgEnum

Status message
(Response)

StatusMsg whose data type is DataType.StatusMsgEnum

Post Message PostMsg whose data type is DataType.PostMsgEnum

Generic Message GenericMsg whose data type is DataType.GenericMsgEnum

Ack Message AckMsg whose data type is DataType.AckMsgEnum

Table 3: Message Concepts

2 Domain Model Overview

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 8
EMAC380UMRDM.240

2.4 Consumer / Interactive Provider Initial Interaction

An Open Message Model consumer application can connects to Open Message Model interactive provider applications, including the
Refinitiv Real-Time Distribution System, Refinitiv Data Feed Direct, and the Refinitiv Data Platform. This interaction first requires an
exchange of login messages between the consumer and provider, where the provider can either accept or reject the consumer. If the
consumer is allowed to log in, it may then request the list of services available from the provider. Optionally1, the consumer can request any
dictionaries it needs to decode data from the provider. After this process successfully completes, the consumer application can begin
requesting from non-administrative domains, which provide other content (e.g. Market Price, Market By Order).

Figure 1. Open Message Model Consumer and Interactive Provider Initial Interactions

1. Instead of downloading any needed dictionaries, the application can load them from a local file.

2 Domain Model Overview

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 9
EMAC380UMRDM.240

2.5 Sending and Receiving Content

Use of non-administrative domains generally follows a specific sequence:

• The consumer sends a ReqMsg containing the name of an item it is interested in.

• The provider first responds with a RefreshMsg to bring the consumer up to date with all currently available information.

• As data changes, the provider sends an UpdateMsg (if the consumer requested streaming information).

• When the consumer is no longer interested, it sends a CloseMsg to close the stream (or, if the provider needs to close the stream, it
uses a StatusMsg).

Figure 2. General Domain Use

2 Domain Model Overview

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 10
EMAC380UMRDM.240

2.6 General Enterprise Message API Concepts

Many domains share a set of common behaviors for handling data. If a specific behavior is not supported on a domain, this should be
specified in that domains detailed description. This section briefly defines these concepts; the Enterprise Message API C++ Edition
Developers Guide describes them in greater detail.

2.6.1 Snapshot and Streaming Requests
Many domains generally support issuing a request message with or without setting the ReqMsg.InterestAfterRefresh flag. When the flag is
set, the request is known as a “streaming” request, meaning that the refresh will be followed by updates.

When a snapshot request is made, the refresh should have a StreamState of StreamState::NonStreamingEnum. When the final part of
the refresh is received, the stream is considered closed (the final refresh is indicated by the RefreshMsg.Complete flag on the
RefreshMsg). The consumer should be prepared to receive status messages or update messages between the first and final parts of the
refresh (if the domain supplies only single part refresh messages, like Market Price, no updates would be delivered on the stream).

2.6.2 Reissue Requests and Pause/Resume
A consumer application can request a new refresh and change certain parameters on an already requested stream. To do so, the application
sends a subsequent ReqMsg on the same stream. This is known as a reissue.

A reissue changes the priority of a stream and pauses or resumes data flow.

• To pause streaming data, the application can send a reissue with the ReqMsg.Pause flag. Issuing a pause on the Login stream is
interpreted as a Pause All request, resulting in all streams being paused.

• To resume data flow on the stream, the application can send a subsequent reissue with the ReqMsg.InterestAfterRefresh flag.
Issuing a resume on the Login stream is interpreted as a Resume All.

Pause and Resume is provided as a best effort, and data may continue streaming even after a pause has been issued.

For further details on reissue requests, changeable parameters, and Pause and Resume functionality, refer to the Enterprise Message API
C++ Edition Developers Guide.

2 Domain Model Overview

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 11
EMAC380UMRDM.240

2.6.3 Clearing the Cache on Refreshes
If you perform a refresh, you might need to clear the cache. To clear the cache, call RefreshMsg.ClearCache with a value of true. For
further details on using the clear cache flag, refer to the Enterprise Message API C++ Edition Reference Guide.

When clearing a cache, you must observe the following conditions:

• Pass true value on all solicited level 1 data refreshes.

• Pass true value only in the first part of solicited level 2 data refreshes.

• Calling this function on unsolicited refreshes depends on the application and its intent:

- If set to true on an unsolicited refresh, the cache is cleared and populated with new data.
- If not set to true on the unsolicited refresh, new data is overlaid onto the existing data. In this case, the resulting image / refresh

is a superset of fields currently contained in cache combined with the set brought by the current refresh.

2.6.4 Dynamic View
A dynamic view allows a consumer application to specify a subset of data content in which it is interested. A providing application can
choose to supply only this requested subset of content across all response messages. This filtering results in reduced data flow across the
connection. View use can be leveraged across all non-administrative domain model types, where specific usage and support should be
indicated in the model definition. The provider indicates its support for view requesting via the SupportViewRequests Login attribute, as
described in Section 3.3.1. For more information on dynamic views, refer to the Enterprise Message API C++ Edition Developers Guide.

2.6.5 Batch Request
A batch request allows a consumer application to indicate interest in multiple like-item streams with a single ReqMsg. A providing
application should respond by providing a status on the batch request stream itself and with new individual item streams for each item
requested in the batch. Batch requesting can be leveraged across all non-administrative domain model types. The provider indicates its
support for batch requests via the supportBatchRequests Login attribute, as described in Section 3.3.1. For more information on batch
requests, refer to the Enterprise Message API C++ Edition Developers Guide.

2.6.6 Posting
Posting offers an easy way for an Open Message Model consumer application to publish content to upstream components which can then
provide the information. This can be done off-stream using the Login domain or on-stream using any other non-administrative domain. Use
PostMsg to post content to the system. A PostMsg can contain any Open Message Model container type as its payload (but this is often an
Msg). A provider indicates support for posting via the supportOMMPost Login attribute, as described in Section 3.3.1. For more information
on posting, refer to the Enterprise Message API C++ Edition Reference Guide.

RefreshMsg().clearCache(true);

NOTE: Currently, the Refinitiv Real-Time Advanced Distribution Server supports view-only on Market Price Level 1 data. As a result, this
causes the Enterprise Message API to provide view on Market Price Level 1.

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 12
EMAC380UMRDM.240

3 Login Domain

3.1 Description

The Login domain registers a user with the system, after which the user can request1 or post2 Refinitiv Domain Model content. A Login
request can also be used to authenticate a user with the system.

• A consumer application must log into the system before it can request or post content.

• A non-interactive provider application must log into the system before providing any content.

For further details:

• Section 3.2 details the use of each message within the Login domain.

• Section 3.3 presents the message payloads.

• Section 3.4 includes a brief summary of login handling and authentication.

• Section 3.5 - Section 3.7 cover specific use case scenarios.

1. Consumer applications can request content after logging into the system.
2. Consumer applications can post content, which is similar to contribution or unmanaged publication, after logging into the system.

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 13
EMAC380UMRDM.240

3.2 Usage

3.2.1 Login Request Message
A Login request message is encoded and sent by Open Message Model consumer and Open Message Model non-interactive provider
applications internally in the constructor of this class. This message registers a user with the system. After receiving a successful login
response, applications can then begin consuming or providing additional content. An Open Message Model interactive provider can use the
Login request information to authenticate users with the Data Access Control System.

You can configure a login request message using the following methods.

An initial Login request must be streaming (i.e., a ReqMsg.InterestAfterRefresh flag set to true is required). After the initial Login stream is
established, subsequent Login requests using the same StreamID login handle can be sent to obtain additional refresh messages, pause
the stream, or resume the stream. If a login stream is paused, this is interpreted as a ‘Pause All’ request which indicates that all item streams
associated with the user should be paused. A login stream is paused by specifying ReqMsg.Pause to true. To resume data flow on all item
streams (also known as a Resume All), users need to call ReqMsg.InterestAfterRefresh with true value. For more information, refer to the
Enterprise Message API C++ Edition Developers Guide.

METHOD NAME DESCRIPTION

OmmConsumerConfig.username() Required.
Specifies the user name for login request message.

OmmConsumerConfig.password() Optional
Specifies the password for login request message.

OmmConsumerConfig.position() Optional
Specifies the position for login request message.

OmmConsumerConfig.applicationId() Optional
Specifies the authorization application identifier for login request message.

OmmConsumerConfig.addAdminMsg() Optional
Specifies a login request message to override the default login request.

Table 4: Configure Login Request Message

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_LOGIN = 1

Interactions Conditional.
• Setting InitialImage to true indicates that an initial image is required.
• Setting InterestAfterRefresh to true indicates that a streaming request is required. A streaming

request is required before any other requests. Non-streaming requests are unsupported.
• Setting Pause set to true indicates that a pause is required. A pause request is a request to pause all

item streams associated with the login. To resume all item streams associated with the login, issue
another streaming request.

QoS Not used.

worstQos Not used.

ExtendedHeader Not used.

ServiceId Not used.

Table 5: Login Request Message

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 14
EMAC380UMRDM.240

3.2.2 Login Request Elements
You can use the Login Attrib elements to send additional authentication information and user preferences between components. The
ReqMsg.Attrib is an ElementList. The predefined elements available on a Login Request are shown in the following table.

NameType Optional. Possible values are:
• USER_NAME
• USER_EMAIL_ADDRESS
• USER_TOKEN
• USER_COOKIE
• USER_AUTHN_TOKEN
If NameType is not set, it is assumed to be USER_NAME.
A type of USER_NAME typically corresponds to a Data Access Control System user name. This can be
used to authenticate and permission a user.
USER_TOKEN is specified when using the AAA API The user token is retrieved from a AAA API gateway
and then passed through the system via the Name. To validate users, a provider can pass this user token
to an authentication manager application.
If you specify USER_AUTHN_TOKEN, you must also set Name to a single, null character (i.e., a 0x00
binary), and include an AuthenticationToken element in the Attrib. For details on the
AuthenticationToken, refer to Section 3.2.2.
Both USER_TOKEN and USER_AUTHN_TOKEN can periodically change: when it changes, an
application can send a login reissue to pass information upstream.
• For further details on using USER_TOKEN, refer to the AAA API documentation.
• For further details on using USER_AUTHN_TOKEN, refer to the UserAuthn Authentication User

Manual.a

Name Required. Name should be populated with appropriate content corresponding to the NameType
specification.

Filter Not used.

Identifier Not used.

Attrib Optional. Typically an ElementList. Attributes are specified in Section 3.2.2.

Payload Not used.

a. For further details on Refinitiv Data Platform authentication, refer to the UserAuthn Authentication User Manual, accessible on MyRefinitiv in the Data
Access Control System product documentation set.

ELEMENT NAME DATA TYPE
ENUMERATION

RANGE/
EXAMPLE DESCRIPTION

AllowSuspectData UInt 0 | 1 • 1: Indicates that the consumer application
allows a OmmState.Suspect state. 1 is the
default setting.

• 0: Indicates that the consumer application
prefers any suspect data result in the stream
being closed with an
OmmState.ClosedRecover state.

For more information, refer to Section 3.4.5.

Table 6: Login Request Attrib Elements

COMPONENT DESCRIPTION / VALUE

Table 5: Login Request Message (Continued)

https://my.refinitiv.com/

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 15
EMAC380UMRDM.240

ApplicationAuthorizationToken ASCII Sequence of single
byte characters
from the base36
character set ([0-
9][A-Z])

Indicates that application behaviors was
inspected and approved by Refinitiv.
For more information on obtaining an application
authorization token, contact your Refinitiv
representative.

ApplicationId ASCII 1 - 65535
e.g., 256

The Data Access Control System application ID. If
the server authenticates with the Data Access
Control System, the consumer application might
need to pass in a valid ApplicationId. This
must be unique for each application. IDs from 1 to
256 are reserved for permanent market data
applications. These are assigned by Refinitiv and
will be uniform across all client systems. IDs from
257 to 65535 are available for site-specific use.

ApplicationName ASCII Name of
application e.g.,
Enterprise
Message API

Identifies the application sending the Login
request or response message. When present, the
application name in the Login request identifies
the consumer, and the application name in the
Login response identifies the Open Message
Model provider.

AuthenticationExtended Buffer Any binary buffer This is a binary buffer whose content will be
passed to the token authenticator as an additional
means for verifying a user’s identity.

AuthenticationToken ASCII Any ASCII String,
e.g., HOLDER

Conditional. AuthenticationToken is a
client-generated token that identifies the user
when operating in an environment that uses
UserAuthn Authentication. On login reissue
messages, this field contains a new token
intended to replace the previous one about to
expire.
If your Refinitiv Real-Time Distribution System
has UserAuthn Authentication enabled, an
AuthenticationToken is included in the
message. For further details on UserAuthn
Authentication, refer to the UserAuthn
Authentication User Manual, accessible on
MyRefinitiv in the Data Access Control System
product documentation set.
The default setting is: "" (an empty string).

DisableDataConversion N/A N/A Reserved by Refinitiv.

DownloadConnectionConfig UInt 0 | 1 Specifies whether to download the configuration:
• 1: Indicates the user wants to download

connection configuration information.
• 0 (or if absent): Indicates that no connection

configuration information is desired. 0 is the
default setting.

ELEMENT NAME DATA TYPE
ENUMERATION

RANGE/
EXAMPLE DESCRIPTION

Table 6: Login Request Attrib Elements (Continued)

https://my.refinitiv.com/

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 16
EMAC380UMRDM.240

InstanceId ASCII Any ASCII String,
e.g., Instance1

InstanceId is used to differentiate applications
that run on the same machine. However, because
InstanceId is set by the user logging into the
system, it does not guarantee uniqueness across
different applications on the same machine.

Password ASCII my_password Sets the password for logging into the system.
This information may be required and encrypted
in the future.

Position ASCII ip addr/hostnameip
addr/net
e.g., 192.168.1.1/
net

The Data Access Control System position. If the
server is authenticating with the Data Access
Control System, the consumer application might
need to pass in a valid position.

ProvidePermissionExpressions UInt 0 | 1 If specified on the Login Request, this indicates a
consumer wants permission expression
information to be sent with responses. Permission
expressions allow for items to be proxy
permissioned by a consumer via content-based
entitlements.
ProvidePermissionExpressions defaults to
1.

ProvidePermissionProfile UInt 0 | 1 When specified on a Login Request, indicates
that a consumer desires the permission profile.
An application can use the permission profile to
perform proxy permissioning.
ProvidePermissionProfile defaults to 1.

Role UInt LOGIN_ROLE_CO
NS = 0,
LOGIN_ROLE_PR
OV = 1

Indicates the role of the application logging onto
the system.
• An Open Message Model consumer

application should specify its role as
LOGIN_ROLE_CONS.

• An Open Message Model non-interactive
provider application should specify its role as
LOGIN_ROLE_PROV.

• Enterprise Message API defaults the role
element with a value of 1.

Open Message Model consumer applications
typically connect to a different port number than
non-interactive provider applications. Role
information allows Refinitiv Real-Time Distribution
System to detect and inform users of incorrect
port use.
Role defaults to 0.

RoundTripLatency UInt 2 Indicates whether the consumer supports Round
Trip Time (RTT) latency monitoring. The presence
of this element indicates that the consumer
supports the RTT monitoring feature. Non-
interactive providers do not use this element.
If the element is missing, the consumer does not
support RTT Latency monitoring.

ELEMENT NAME DATA TYPE
ENUMERATION

RANGE/
EXAMPLE DESCRIPTION

Table 6: Login Request Attrib Elements (Continued)

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 17
EMAC380UMRDM.240

3.2.3 Login Request Domain Representation
The Domain Representation of the Login Request Message is an easy-to-use object which can set up and return an encoded Open
Message Model Login Request Message without extensive effort. You can find this object in Enterprise Message API’s Login package.

Figure 3. Login Request Domain Representation Code Usage Example

SingleOpen UInt 0 | 1 • 1: Indicates the consumer application wants
the provider to drive stream recovery.

• 0: Indicates that the consumer application will
drive stream recovery.

For more information, refer to Section 3.4.5.
SingleOpen defaults to 1.

SupportProviderDictionaryDownload UInt 0 | 1 Indicates whether the server supports the
Provider Dictionary Download feature:
• 1: The server supports provider dictionary

downloads.
• 0: The server does not support provider

dictionary downloads.
If this element is missing, the server does not
support provider dictionary downloads.
For more information on the provider dictionary
download feature, refer to the Enterprise
Message API C++ Edition Developers Guide.
SupportProviderDictionaryDownload
defaults to 0.

OmmConsumerConfig ommConsumerConfig;

ommConsumerConfig.operationModel(

OmmConsumerConfig::UserDispatchEnum);

Login::LoginReq loginRequest;

loginRequest.name("user");

loginRequest.applicationId("127");

loginRequest.position("127.0.0.1/net");

loginRequest.allowSuspectData(true);

ommConsumerConfig.addAdminMsg(loginRequest.getMessage());

ELEMENT NAME DATA TYPE
ENUMERATION

RANGE/
EXAMPLE DESCRIPTION

Table 6: Login Request Attrib Elements (Continued)

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 18
EMAC380UMRDM.240

3.2.4 Login Refresh Message
A Login refresh message is encoded using RefreshMsg and sent by Open Message Model interactive provider applications. This message
is used to respond to a Login Request message after the user’s Login is accepted. An Open Message Model provider can use the Login
request information to authenticate users with the Data Access Control System. After authentication, a refresh message is sent to convey
that the login was accepted. If the login is rejected, a Login status message should be sent as described in Section 3.2.7.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_LOGIN = 1

State Optional.
For the Refresh message, when accepting Login:
• StreamState = OmmState.Open
• DataState = OmmState.Ok
• StatusCode = OmmState.None

Solicited Required. Specifies whether the refresh was solicited.
• true: Indicates that the refresh was solicited.
• false: Indicates that the refresh was unsolicited.

Indications • Required: Complete set to true, which indicates the refresh is complete. The content of a Login Refresh
message is expected to be atomic and contained in a single part, therefore RefreshMsg.Complete must be
set to true.

• Optional: ClearCache set to true, which indicates to clear the cache.

QoS Not used.

SeqNum Not used.

ItemGroup Not used.

PermissionData Not used.

extendedHeader Not used.

ServiceId Not used.

NameType Optional.
Possible values:
• USER_NAME
• USER_EMAIL_ADDRESS
• USER_TOKEN
• USER_AUTHN_TOKEN
If NameType is not set then it is assumed to be a NameType of USER_NAME.
If present, the value should match the type specified in the Login request.

Name Optional.
Name should match the Name specified in the Login request and contain appropriate content corresponding to
the NameType specification.

Filter Not used.

Identifier Not used.

Table 7: Login Refresh Message

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 19
EMAC380UMRDM.240

Attrib Optional.
Typically an ElementList.Elements are specified in Section 3.2.5.

Payload Optional.
Typically present when login requests connection configuration or permission profile information. The payload is
sent as an ElementList. For payload details, refer to Section 3.3.1.

COMPONENT DESCRIPTION / VALUE

Table 7: Login Refresh Message (Continued)

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 20
EMAC380UMRDM.240

3.2.5 Login Refresh Elements
The Login Attrib can be used to send additional authentication information and user preferences between components. The
ReqMsg.Attrib is an ElementList, which can contain any of the following predefined elements (none of which are required):

ELEMENT NAME DATA TYPE
ENUMERATION RANGE/EXAMPLE DESCRIPTION

AllowSuspectData UInt 0 | 1 Sets whether the provider application passes along
suspect StreamState information.
• 1: The provider application passes along

suspect StreamState information. 1 is the
default setting.

• 0: The provider application does not pass along
suspect data.

Any suspect stream will be closed with an
OmmState.ClosedRecover state.
For more information, refer to Section 3.4.5.

ApplicationId ASCII 1 - 65535
e.g., 256

Specifies the Data Access Control System
application ID. If the server authenticates with the
Data Access Control System, the consumer
application may be required to pass in a valid
ApplicationId. This should match whatever
was sent in the request. This must be unique for
each application. IDs from 1 to 256 are reserved for
permanent market data applications. Refinitiv
assigns these and they are uniform across all client
systems. IDs from 257 to 65535 are available for
site-specific use.

ApplicationName ASCII name of application
e.g., Enterprise
Message API

Identifies the application sending the Login request
or response message. When present, the
application name in the Login request identifies the
Open Message Model consumer and the
application name in the Login response identifies
the Open Message Model provider.

AuthenticationErrorCode UInt From 0 to
4294967296

Specifies the code for a specific Refinitiv Real-Time
Distribution System Authentication error (or non-
error) condition. 0 indicates no error condition and
is the default setting.

AuthenticationErrorText ASCII User-defined value Text accompanying and explaining the
AuthenticationErrorCode.

AuthenticationExtendedResp Buffer User-defined value This is a binary buffer.
AuthenticationExtendedResp contains
additional customer-defined data associated with
the AuthenticationToken element sent in the
original Login Request.

AuthenticationTTReissue UInt User-defined value Indicates when a new authentication token needs
to be reissued (in UNIX epoch time).

Table 8: Login Refresh Attrib Elements

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 21
EMAC380UMRDM.240

Position ASCII ip addr/hostname or
ip addr/net
e.g.:
192.168.1.1/net

Specifies the Data Access Control System location.
If the server authenticates with the Data Access
Control System, the consumer application might be
required to pass in a valid position. If present, this
should match whatever was sent in the request or
be set to the IP address of the connected client.

ProvidePermissionExpressions UInt 0 | 1 If specified on a Login Refresh, indicates that a
provider will send permission expression
information with its responses.
ProvidePermissionExpressions is typically
present because the login request message
requested this information. Permission expressions
allow for items to be proxy permissioned by a
consumer via content-based entitlements.
ProvidePermissionExpressions defaults to
1.

ProvidePermissionProfile UInt 0 | 1 If specified on the Login Refresh, indicates that the
permission profile is provided. This is typically
present because the login request message
requested this information. An application can use
the permission profile to perform proxy
permissioning.
ProvidePermissionProfile defaults to 1.

RoundTripLatency UInt 2 Indicates support for RoundTripLatency
monitoring by the provider. If the element is
missing, the provider might still support the feature.

SingleOpen UInt 0 | 1 Specifies whether the provider drives stream
recovery:
• 1: The provider drives stream recovery. 1 is the

default setting.
• 0: The provider does not drive stream recovery;

it is the responsibility of the downstream
application.

For more information, refer to Section 3.4.5.

SupportBatchRequests UInt 0, 7 Indicates whether the provider supports batch
messages. Consumers use batch messages to
specify multiple items or streams in the same
request or close message. For more information on
batch requesting, refer to the Enterprise Message
API C++ Edition Developers Guide.
• 0x0 (or if absent): The provider does not

support batch messages. 0 is the default
setting.

• 0x1: The provider supports batch request.
• 0x2: The provider supports batch reissue.
• 0x4: The provider supports batch close.
For instance, if value is set to 7, then based on
combination of bits set (0x1 + 0x2 + 0x4), provider
supports batch request, reissue, and close.

ELEMENT NAME DATA TYPE
ENUMERATION RANGE/EXAMPLE DESCRIPTION

Table 8: Login Refresh Attrib Elements (Continued)

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 22
EMAC380UMRDM.240

SupportEnhancedSymbolList UInt 0 | 1 Indicates whether the provider supports enhanced
symbol list functionality.
• 0: The provider does not support Symbol List

enhancements. 0 is the default setting.
• 1: The provider supports Symbol List data

streams.

SupportOMMPost UInt 0 | 1 Indicates whether the provider supports Open
Message Model posting and whether the user is
permissioned to post:
• 1: The provider supports Open Message Model

posting and the user is permissioned.
• 0: The provider supports the Open Message

Model posting feature, but the user is not
permissioned. 0 is the default setting.

• If absent, the server does not support the Open
Message Model Post feature.

For more information on Posting, refer to the
Enterprise Message API C++ Edition Developers
Guide.

SupportOptimizedPauseResume UInt 0 | 1 Indicates whether the provider supports Optimized
Pause and Resume. Optimized Pause and
Resume allows for pausing/resuming of individual
item streams or pausing all item streams (by
pausing the Login stream). For more information on
Pause and Resume, refer to the Enterprise
Message API C++ Edition Developers Guide.
• 1: The server supports optimized pause and

resume.
• 0 (or if absent): The server does not support

optimized pause and resume. 0 is the default
setting.

SupportPauseResume UInt 0 | 1 Indicates whether the server supports pause and
resume.
• 1: The server supports pause and resume.
• 0: (or if absent): The server does not support

pause and resume. 0 is the default setting.

SupportProviderDictionaryDownl
oad

UInt 0 | 1 Indicates whether the server supports the Provider
Dictionary Download feature:
• 1: The server supports the provider dictionary

download.
• 0: The server does not support the provider

dictionary download feature. 0 is the default
setting.

If this element is missing, the server does not
support the provider dictionary download feature.
For more information on the provider dictionary
download feature, refer to the Enterprise Message
API C++ Edition Developers Guide.

ELEMENT NAME DATA TYPE
ENUMERATION RANGE/EXAMPLE DESCRIPTION

Table 8: Login Refresh Attrib Elements (Continued)

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 23
EMAC380UMRDM.240

SupportStandby UInt 0 | 1 Indicates whether the provider supports Warm
Standby functionality. If supported, a provider can
be told to run as an active or a standby server,
where the active will behave as usual. The standby
will respond to item requests only with the message
header and will forward any state changing
information. If informed that the active server failed,
the standby begins sending responses and
assumes active functionality.
• 1: The provider supports a Warm Standby group

setup.
• 0 (or if absent): The provider does not support

warm standby functionality. 0 is the default
setting.

For more information on Warm Standby
functionality, refer to Section 3.2.12.

SupportStandbyMode UInt 0 | 1 | 2 | 3 Indicates the Warm Standby modes supported by
the provider. SupportStandby needs to be set to
1 in addition to SupportStandbyMode.
• 1: The provider supports Login-based Warm

Standby.
• 2: The provider supports Service-based Warm

Standby.
• 3: The provider supports both Login and

Service-based Warm Standby.
• 0 (or if absent): The provider does not support

warm standby functionality. 0 is the default
setting.

SupportViewRequests UInt 0 | 1 Indicates whether the provider supports requesting
with Dynamic View information. Using Dynamic
Views, a user can request only the specific
contents of the response information in which they
are interested. For more information on using
Dynamic Views, refer to the Enterprise Message
API C++ Edition Developers Guide.
• 1: The provider supports Dynamic Views

specified on request messages.
• 0 (or if absent): The provider does not support

Dynamic Views specified on request messages.
0 is the default setting.

ELEMENT NAME DATA TYPE
ENUMERATION RANGE/EXAMPLE DESCRIPTION

Table 8: Login Refresh Attrib Elements (Continued)

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 24
EMAC380UMRDM.240

3.2.6 Login Refresh Domain Representation
The Domain Representation of the Login Refresh Message is an easy-to-use object which can set up and return an encoded Open Message
Model Login Refresh Message without extensive effort. You can find this object in Enterprise Message API’s Login package.

Figure 4. Login Refresh Domain Representation Code Usage Example

Login::LoginRefresh loginRefresh = Login::LoginRefresh();

loginRefresh.allowSuspectData(true);

loginRefresh.singleOpen(true);

loginRefresh.name("user");

loginRefresh.solicited(true);

loginRefresh.state(OmmState::OpenEnum, OmmState::OkEnum, OmmState::NoneEnum, "Login accepted");

ommProvider.submit(loginRefresh.getMessage(), handle);

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 25
EMAC380UMRDM.240

3.2.7 Login Status Message
Open Message Model provider and non-interactive provider applications use the Login status message to convey state information
associated with the login stream. Such state information can indicate that a login stream cannot be established or to inform a consumer of a
state change associated with an open login stream.

The Login status message can also be used to reject a login request or close an existing login stream. When a login stream is closed via a
status, any other open streams associated with the user are also closed as a result.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_LOGIN = 1

State Optional.
For Status, when rejecting Login:
• StreamState = OmmState.Closed
• DataState = OmmState.Ok
• StatusCode = OmmState.NotAuthorized

For Status, when a user needs to retry a login, for example when the Data Access Control System is not
yet connected to a Refinitiv Real-Time Advanced Distribution Server:
• StreamState = OmmState.ClosedRecover
• DataState = OmmState.Suspect
• StatusCode = OmmState.NotAuthorized

SeqNum Optional.

ItemGroup Not used.

PermissionData Not used.

extendedHeader Not used.

ServiceId Not used.

NameType Optional. Possible values:
• USER_NAME
• USER_EMAIL_ADDRESS
• USER_TOKEN
• USER_COOKIE
If present, NameType should match the type specified in the Login request. If NameType is unspecified, it
is assumed to be a NameType of USER_NAME.

Name Optional. Name should match the one used in the Login request and should contain appropriate content
corresponding to the specification.

Filter Not used.

Identifier Not used.

Attrib Optional.
Typically an ElementList. For the contents of ElementList, refer to Section 3.2.5.

Payload Not used.

Table 9: Login Status Message Member Use

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 26
EMAC380UMRDM.240

3.2.8 Login Status Elements
The Login Attrib can be used to send additional authentication information and user preferences between components. The
ReqMsg.Attrib is an ElementList, which can contain any of the following predefined elements (none of which are required):

3.2.9 Login Status Domain Representation
The Domain Representation of the Login Status Message is an easy-to-use object which can set up and return an encoded Open Message
Model Login Status Message without extensive effort. You can find this object in Enterprise Message API’s Login package.

Code Example 1: Login Status Domain Representation Code Usage Example

3.2.10 Login Update Message
Update messages are currently not used or supported on a Login stream.

ELEMENT NAME DATA TYPE
ENUMERATION RANGE/EXAMPLE DESCRIPTION

AuthenticationErrorCode UInt From 0 to
4294967296

Specifies the code for a specific Refinitiv Real-Time
Distribution System Authentication error (or non-
error) condition. 0 indicates no error condition and
is the default setting.

AuthenticationErrorText ASCII Text accompanying and explaining the
AuthenticationErrorCode.

Table 10: Login Status Attrib Elements

Login::LoginStatus loginStatus = Login::LoginStatus();

if (requestMsg.hasNameType())

loginStatus.nameType(requestMsg.getNameType());

if (requestMsg.hasName())

loginStatus.name(requestMsg.getName());

loginStatus.state(OmmState::ClosedEnum, OmmState::SuspectEnum, OmmState::NotFoundEnum, "Invalid
 domain");

ommProvider.submit(loginStatus.getMessage(), handle);

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 27
EMAC380UMRDM.240

3.2.11 Login Close Message
A Login close message is encoded and sent by Open Message Model consumer applications. This message allows a consumer to log out of
the system. Closing a login stream is equivalent to a ‘Close All’ type of message, where all open streams are closed (thus all other streams
associated with the user are closed). A provider can log off a user and close all of that user’s streams via a Login Status message (for details,
refer to Section 3.2.7).

3.2.12 Login Generic Message Use

3.2.12.1 RTT Login Generic Message
A Round Trip Time (RTT) Login Generic Message exchange is initiated by the Interactive Provider application. This message must contain
the Ticks count, which is set by the provider before sending the message to a consumer that supports RTT functionality. The CPU tick count
can be retrieved using the {getTicks} call. When the consumer receives the RTT message, the consumer automatically sends it back to
the interactive provider with the Ticks value unchanged. The interactive provider calculates the round trip time by subtracting the Ticks
value from the message from its current time given by the {getTicks} call. In its subsequent RTT requests to the consumer, a provider
can include the previously calculated RoundTripLatency value, in microseconds.

Handling RTT Login Generic messages on the provider’s side should be implemented in the user application. On the consumer side, the
Watchlist automatically mirrors the provider’s RTT request back to the provider when RTT handling is configured. The consumer can listen
for these messages and implement specific business-logic to further handle them.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_LOGIN = 1

extendedHeader Not used.

Payload Not used.

Table 11: Login Close Message Member Use

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_LOGIN = 1

PartNum Not used.

SeqNum Not used.

SecondarySeqNum Not used.

PermissionData Not used.

extendedHeader Not used.

ServiceId Not used.

NameType Not used.

Name Not used.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. Payload is sent as an ElementList type and must contain an ElementEntry with the ticks
count that represents the time on the provider’s side. Additionally, Payload can contain two optional
entries: RoundTripLatency and TcpRetrans. For further details, refer to Section 3.3.2.

Table 12: RTT Login Generic Message Member Use

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 28
EMAC380UMRDM.240

3.2.13 Login Post Message
Open Message Model consumer applications can encode and send data for any item via Post messages on the item’s Login stream. This is
known as off-stream posting because items are posted without using that item’s dedicated stream. Posting an item on its own dedicated
stream is referred to as on-stream posting.

When an application is posting off-stream, the PostMsg requires Name and ServiceId information. For more details on posting, refer to the
Enterprise Message API C++ Edition Developers Guide.

3.2.14 Login Ack Message
Open Message Model provider applications encode and send acknowledgment messages (AckMsg) to acknowledge the receipt of Post
messages. This message is used whenever a consumer is posting off-stream and asks for acknowledgments. The acknowledgment
contains a positive (ACK) or negative (NACK) code. For more details on posting, see the Enterprise Message API C++ Edition Developers
Guide.

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 29
EMAC380UMRDM.240

3.3 Data

3.3.1 Login Refresh Message Payload
When a Login request message asks for connection configuration information (i.e., DownloadConnectionConfig = 1), a provider capable of
supplying these details should respond with extended connection information in the RefreshMsg payload. This information can be useful for
load balancing connections across multiple providers or Refinitiv Real-Time Advanced Distribution Server components. Load balancing can
be set up in a manner where some well-known providers act solely as load-balancing servers, monitoring the load and state of other
providers and directing consumers to less-loaded providers to handle the information exchange.

The extended connection information contains a list of other providers, along with connection and load-related information, and is formatted
as a sorted Vector type, where each VectorEntry contains an ElementList. Each vector entry contains data specific to one provider.
The summary data (an ElementList) contains information about the number of standby providers to which the consumer should connect.
If this value is non-zero, the consumer is expected to support Warm Standby functionality and connect to multiple providers.

The list should be sorted in order of best to worst choice.

Figure 5. Login Refresh Message Payload

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 30
EMAC380UMRDM.240

When the payload is present, the summary data ElementList must contain the following element (which has no default):

Each VectorEntry contains an ElementList, each list describing a single provider. Possible elements in this list are as follows, with any
default behavior included in the description:

NAME TYPE RANGE/EXAMPLE DESCRIPTION

NumStandbyServers UInt 0 - 0xFFFFFFFF
value

Specifies the number of standby servers to which
the client can connect.
If set to 0, only one provider is connected, which
serves as the primary connection (i.e., warm
standby should not be attempted).

Table 13: Vector.SummaryData’s ElementList Contents

NAME TYPE RANGE/EXAMPLE DESCRIPTION

Hostname ASCII “myHostName”
“192.168.1.100”

Conditional. Specifies the candidate provider’s IP
address or hostname. Hostname is required when
a payload is present.

Port UInt 14002 Conditional. Specifies the candidate provider’s
port number. Port is required when a payload is
present.

LoadFactor UInt 0 - 65535 Describes the load of the provider, where 0 is the
least loaded and 65535 is the most loaded. The
Vector is expected to be sorted, so a consumer
need not traverse the list to find the least loaded;
the first VectorEntry should contain an
ElementList describing the least-loaded
provider.
LoadFactor defaults to 65535.

ServerType UInt 0 | 1 When using a warm standby setup, ServerType
specifies the provider’s expected behavior:
• 0: This provider should be the Active server.
• 1: This provider should be the Standby server. 1

is the default setting.

SystemID ASCII For future use.

Table 14: ElementList Contents

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 31
EMAC380UMRDM.240

3.3.2 Login Generic Message Payloads

3.3.2.1 Login Consumer Connection Status Message Payload
The Login data structure for Payload is a Map of ASCII-> ElementList. Each key is a ServiceName. Each ElementList contains one
ElementEntry.PayloadThere is no summary data and typically only one map entry that informs the provider of its warm standby role.

Figure 6. Login Generic Message Payload

ELEMENT NAME DATA TYPE RANGE/EXAMPLE DESCRIPTION

WarmStandbyMode UInt 0 | 1 Required. Informs an interactive provider of its role
in a Warm Standby group.
• 0: Informs the provider to be an Active server
• 1: Informs the provider to be a Standby server.
WarmStandbyMode does not have a default.

Table 15: MapEntry Elements

NOTE: The Warm StandBy functionality is not yet implemented in the C# version of the API.

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 32
EMAC380UMRDM.240

3.3.2.2 RTT Login Generic Message Payload
The RTT message payload is an ElementList, which must contain an ElementEntry with Ticks data and, optionally, ElementEntrys
with latency and TCP retransmission values.

ELEMENT NAME DATA TYPE RANGE/EXAMPLE DESCRIPTION

Ticks Int 0 – 264 - 1 | 235634 Required. Specifies the time set by the provider at the
time the message was created.

RoundTripLatency UInt 0 – 264 - 1 | 358 Specifies the previous Round Trip Latency value (in
microseconds) calculated by the provider.

TcpRetrans UInt 0 – 264 - 1 | 5 Specifies the current number of retransmissions.

Table 16: ElementList ElementEntrys

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 33
EMAC380UMRDM.240

3.4 Special Semantics

3.4.1 Login Direction
Login Request Messages are always sent from client to server, regardless of which is the provider and which is the consumer. Consumers
send a Login Request Message to the providers they connect to, while non interactive provider send a Login Request Message to the
consumer server.

3.4.2 Initial Login
An Enterprise Message API Consumer sends a login request to an Open Message Model Provider application on behalf of users who are
using login attributes specified in OmmConsumerConfig. Users can register to get a login handle to receive a login status or use the login
handle to reissue and post messages on a login stream.

3.4.3 Multiple Logins
Enterprise Message API does not support multiple logins per OmmConsumer as login stream is opened internally by Enterprise Message
API. If multiple logins are needed in the applications, users need to create additional OmmConsumer instances, one per login.

3.4.4 Group and Service Status
Group and service status messages do not apply to the Login domain.

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 34
EMAC380UMRDM.240

3.4.5 Single Open and Allow Suspect Data Behavior
The SingleOpen and AllowSuspectData Elements that are passed via the ReqMsg. The MsgKey.Attrib can affect how state information
is processed. When the provider indicates support for SingleOpen behavior, the provider should drive the recovery of item streams. If no
provider support is indicated, the consumer should drive any recovery.

The following table shows how a provider can convert messages to honor the consumer’s SingleOpen and AllowSuspectData settings.
The first column in the table shows the provider’s actual StreamState and DataState. Each subsequent column shows how this state
information can be modified to follow that column’s specific SingleOpen and AllowSuspectData settings. If any SingleOpen and
AllowSuspectData configuration causes a contradiction in behavior (e.g., SingleOpen indicates that the provider should handle recovery,
but AllowSuspectData indicates that the consumer does not want to receive suspect status), SingleOpen behavior takes precedence.

The status in the table could be from a Directory STATE filter entry, from a Directory GROUP filter entry, or from an item Status Message. For
more information on Status, refer to the Enterprise Message API C++ Edition Developers Guide.

The following table uses the abbreviations:

• SS for StreamState

• DS for DataState

NOTE: The Enterprise Message API does not perform any special processing based on the SingleOpen and AllowSuspectData settings.
The provider application must perform any necessary conversion.

If AcceptingRequests is FALSE, new requests should not be made to a provider application, regardless of ServiceState. However,
even if AcceptingRequests is FALSE, reissue requests can still be made for any item streams that are currently open to the provider.

ACTUAL STATE
INFORMATION

MESSAGE SENT WHEN:
SINGLEOPEN = 1
ALLOWSUSPECTDATA = 1

MESSAGE SENT WHEN:
SINGLEOPEN = 1
ALLOWSUSPECTDATA = 0

MESSAGE SENT WHEN:
SINGLEOPEN = 0
ALLOWSUSPECTDATA = 1

MESSAGE SENT WHEN:
SINGLEOPEN = 0
ALLOWSUSPECTDATA =
0

SS = OPEN
DS = SUSPECT

SS = OPEN
DS = SUSPECT

SS = OPEN
DS = SUSPECT

SS = OPEN
DS = SUSPECT

SS = CLOSED_RECOVER
DS = SUSPECT

SS = CLOSED_RECOVER
DS = SUSPECT

SS = OPEN
DS = SUSPECT

SS = OPEN
DS = SUSPECT

SS = CLOSED_RECOVER
DS = SUSPECT

SS = CLOSED_RECOVER
DS = SUSPECT

New item request whena:
ServiceState = DOWN
AcceptingRequests = TRUE

a. For more information, refer to Source Directory information in Chapter Chapter 4, Source Directory Domain.

SS = OPEN
DS = SUSPECT

SS = OPEN
DS = SUSPECT

SS = CLOSED_RECOVER
DS = SUSPECT

SS = CLOSED_RECOVER
DS = SUSPECT

New item requests whena:
ServiceState = UP
AcceptingRequests = TRUE

SS = OPEN
DS = OK or SUSPECT based
on individual item’s state.

SS = OPEN
DS = OK or SUSPECT based
on individual item’s state.

SS = OPEN
DS = OK or SUSPECT based
on individual item’s state.

If DS = OK: SS = OPEN
if DS = SUSPECT: SS =
CLOSED_RECOVER

New item requests whena:
ServiceState = UP or
DOWN
AcceptingRequests =
FALSE

SS = OPEN
DS = SUSPECT based on
individual item’s state

SS = OPEN
DS = SUSPECT based on
individual item’s state

SS = CLOSED_RECOVER
DS = SUSPECT based on
individual item’s state

SS = CLOSED_RECOVER
DS = SUSPECT

Connection goes down SS = OPEN
DS = SUSPECT based on
individual item’s state

SS = OPEN
DS = SUSPECT based on
individual item’s state

SS = CLOSED_RECOVER
DS = SUSPECT based on
individual item’s state

SS = CLOSED_RECOVER
DS = SUSPECT

Table 17: SingleOpen and AllowSuspectData Handling

3 Login Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 35
EMAC380UMRDM.240

3.5 Specific Usage: RDF Direct Login

When sending a Login Request message to an RDF Direct, the Name can be an ASCII string composed of printable characters. The Name
is used for scoping some RDF Direct’s configuration. The NameType must be USER_NAME.

In the Attrib’s ElementList, SingleOpen, AllowSuspectData, and ProvidePermissionExpressions are supported. ApplicationId,
Position, Password, and ProvidePermissionProfile are ignored.

The request and response message Payloads have no data.

RDF Direct supports only one login per connection.

3.6 Specific Usage: RDMS

When sending a Login to a Data Access Control System-enabled Refinitiv Real-Time Distribution System deployment, Name should be a
valid username in the Data Access Control System. The Attrib containing ApplicationId and Position will also be used for Data Access
Control System authorization. Name is used for scoping aspects of the Refinitiv Real-Time Distribution System configuration. NameType
must be USER_NAME.

In the Attrib’s ElementList, ApplicationId, Position, SingleOpen, AllowSuspectData, and ProvidePermissionExpressions are
supported. Password and ProvidePermissionProfile are ignored. They may be echoed to the consumer, but the values are not
necessarily correct.

Request and response message Payloads have no data.

Refinitiv Real-Time Distribution System supports only one login per connection.

3.7 Specific Usage: Login Credentials Update Feature

Internally Enterprise Message API stores all login credentials (e.g., user name, name type, login attributes), so it can use them later during
connection recovery phase. These credentials can be changed by the application at any point in time after a connection and login is
established. To change login credentials, an application needs to reissue a login request message with the new credentials. This new
request message must meet the following criteria:

• A new user name parameter, different from the one specified on a prior request or reissue, must be specified.

• The NameType parameter must be specified as USER_TOKEN on all, the initial request and all subsequent reissues.

• The Interactions set in the reissue must match the original InteractionType.

If all of the above conditions/criteria are met, Enterprise Message API will send the reissue with the new login credentials to the server and
will internally store the new/updated login credentials to be used later during connection recovery. If all of the above conditions/criteria are
not met, Enterprise Message API will apply the standard login reissue processing. If no new/updated login credentials are specified by
application, during the connection recovery phase Enterprise Message API will use the previously used ones.

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 36
EMAC380UMRDM.240

4 Source Directory Domain

4.1 Description

The Source Directory domain model conveys:

• Information about all available services and their capabilities. This includes information about domain types supported within a service,
the service’s state, the quality of service, and any item group information associated with the service. Each service is associated with a
unique ServiceName or ServiceId.

• Status information associated with item groups. This allows a single message to change the state of all associated items, avoiding the
need to send a status message for each individual item. The consumer is responsible for applying any changes to its open items. For
details, refer to Section 4.3.1.2 and Section 4.3.1.3.

• Source Mirroring information between a Refinitiv Real-Time Advanced Data Hub and Open Message Model interactive provider
applications exchanged via a specifically-formatted generic message as described in Section 4.2.5.

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 37
EMAC380UMRDM.240

4.2 Usage

4.2.1 Source Directory Request Message
A Directory request message is encoded using ReqMsg with default or user-configured values and sent internally by OmmConsumer in the
constructor of this class. A consumer can request information about all services by omitting ServiceName or ServiceId information, or
specify a ServiceName or ServiceId to request information about only that service. Because the Source Directory domain uses a
FilterList, a consumer can indicate the specific source related information in which it is interested via a Filter. Each bit-value
represented in the filter corresponds to an information set that can be provided in response messages. A consumer can change the
requested filter via a reissue. For more details about the FilterList type, refer to the Enterprise Message API C++ Edition Reference
Guide.

Users can configure a directory request message using the OmmConsumerConfig.addAdminMsg() to override the default directory
request.

Refinitiv recommends that a consumer application minimally request SERVICE_INFO_FILTER and SERVICE_STATE_FILTER for the
Source Directory:

• The Info filter contains the ServiceName and ServiceId data for all available services. When an appropriate service is
discovered by the Open Message Model consumer, the ServiceName or ServiceId associated with the service is used on
subsequent requests to that service.

• The State filter contains status data for the service. Status data informs the Consumer whether the service is up (and available) or
down (and unavailable).

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DIRECTORY = 4

Interactions Required.
• InitialImage: true, indicates initial image is required
• InterestAfterRefresh: true, indicates streaming request is required
Only streaming and non-streaming requests are supported. If you need to send a ConsumerStatus
generic message over the Directory stream, you must specify the interaction as "Streaming" in the
request.

QoS Not used.

worstQos Not used.

priorityClass Not used.

priorityCount Not used.

extendedHeader Not used.

NameType Not used.

Name Not used.

Filter Required. Specifies a filter indicating the specific data in which a consumer is interested. Available
categories include:
• SERVICE_INFO_FILTER = 0x01
• SERVICE_STATE_FILTER = 0x02
• SERVICE_GROUP_FILTER = 0x04
• SERVICE_LOAD_FILTER = 0x08
• SERVICE_DATA_FILTER = 0x10
• SERVICE_LINK_FILTER = 0x20
For details on the contents of each filter entry, refer to Section 4.3.1.1.

Table 18: Source Directory Request Message

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 38
EMAC380UMRDM.240

ServiceName Optional.
• If present, the directory request is for the specified service.
• If neither the ServiceId nor the ServiceName is specified, then the request is for the entire

directory.

NOTE: If the application requests a specific service, it should set either the ServiceId or ServiceName
of the service, but not both.

ServiceId Optional.
• If present, the directory request is for the specified service.
• If neither the ServiceId nor the ServiceName is specified, then the request is for the entire

directory.

NOTE: If the application requests a specific service, it should set either the ServiceId or ServiceName
of the service, but not both.

Identifier Not used.

Attrib Not used.

Payload Not used.

COMPONENT DESCRIPTION / VALUE

Table 18: Source Directory Request Message (Continued)

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 39
EMAC380UMRDM.240

4.2.2 Source Directory Refresh Message
A Directory Refresh Message is encoded using a RefreshMsg and sent by Open Message Model provider and non-interactive provider
applications. This message provides information about currently-known services, as well as additional details ranging from state information
to provided domain types.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DIRECTORY = 4

State Required. Indicates stream and data state information.

Solicited Required. Specifies whether the refresh was solicited. Available values are:
• true: Indicates the refresh was solicited.
• false: Indicates the refresh was unsolicited.

Indications Conditional.
• Complete: true, indicates refresh complete
• ClearCache: true, indicates clear cache
• DoNotCache: true, indicates this refresh message must not be cached.
For more details, refer to the FilterEntries in Section 4.3.1.

QoS Not used.

SeqNum Optional. A user-specified, item-level sequence number that the application can use to sequence
messages within this stream.

ItemGroup Not used.

PermissionData Not used.

extendedHeader Not used.

ServiceId Not used.

NameType Not used.

Name Not used.

Filter Required. Identifies the filtered entries provided in this response. When possible, this should match the
filter set in the consumer’s request. For additional details, refer to the Filter member in Section 4.2.1.

Identifier Not used.

Attrib Not used.

Payload Required. The payload contains data about available services in the form of a Map where each entry’s
key is one ServiceName. For additional details, refer to Section 4.3.1.

Table 19: Source Directory Refresh Message

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 40
EMAC380UMRDM.240

4.2.3 Source Directory Update Message
A Source Directory Update Message is encoded using an UpdateMsg and sent by Open Message Model provider and non-interactive
provider applications. An Update message can:

• Indicate the addition or removal of services from the system or changes to existing services.

• Convey item group status information via the State and Group filter entries. For more information about item group use, refer to the
Enterprise Message API C++ Edition Developers Guide.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DIRECTORY = 4

Indications Conditional.
• DoNotCache: true, indicates this update message must not be cached.
• DoNotConflate: true, indicates this update message must not be conflated.
For more details, refer to the FilterEntries in Section 4.3.1.

UpdateTypeNum Not used.

SeqNum Optional. A user-specified, item-level sequence number that the application can use to sequence
messages in this stream.

ConflatedCount Not used.

ConflatedTime Not used.

PermissionData Not used.

extendedHeader Not used.

ServiceId Not used.

NameType Not used.

Name Not used.

Filter Optional. The Filter indicates which filter entries are provided in this response. For an update, this
conveys only the ID values associated with filter entries present in the update payload.
For more details, refer to the Filter member in Section 4.2.1.

Identifier Not used.

Attrib Not used.

Payload Required. The payload contains only the changed information associated with the provided services. For
more details, refer to Section 4.3.1.

Table 20: Source Directory Update Message

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 41
EMAC380UMRDM.240

4.2.4 Source Directory Status Message
A Source Directory status message is encoded using a StatusMsg and sent by both Open Message Model interactive provider and non-
interactive provider applications. This message conveys state change information associated with a source directory stream. Such state
information can indicate that a directory stream cannot be established or to inform a consumer of a state change associated with an open
directory stream. The Directory Status message can also be used to close an existing directory stream.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DIRECTORY = 4

State Optional. Contains stream and data state information for the directory stream.

• StreamState
• DataState
• StatusCode

ItemGroup Not used.

Indications Optional.
ClearCache: true, Indicates the application should clear its cache
For more details, refer to the FilterEntries described in Section 4.3.1.

PermissionData Optional. If present, this is the new permissioning information associated with all contents on the stream.

extendedHeader Not used.

ServiceId Not used.

NameType Not used.

Name Not used.

Filter Required. The filter represents the filter entries being provided in this response. When possible, this
should match the filter as set in the consumer’s request.
For additional details, refer to the Filter member in Section 4.2.1.

Identifier Not used.

Attrib Not used.

Payload Not used.

Table 21: Source Directory Status Message

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 42
EMAC380UMRDM.240

4.2.5 Source Directory Generic Message
A Source Directory Generic message is encoded and sent by a Refinitiv Real-Time Advanced Data Hub when using a ‘hot standby’
configuration. When running in hot standby mode, the Refinitiv Real-Time Advanced Data Hub can leverage source mirroring and use a
generic message to convey usage information to upstream providers. A generic message can inform providers whether the Refinitiv Real-
Time Advanced Data Hub is an active server without a standby (ActiveNoStandby), an active server with a standby (ActiveWithStandby)
or a standby provider (Standby). This message is mainly for informational purposes, and allows a provider to better understand their role in
a hot standby environment (the provider does not require a return action or acknowledgment).

A provider indicates each service’s ability to process this message via the AcceptingConsumerStatus element in its Source Directory
responses (refer to Section 4.3.1.1).

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DIRECTORY = 4

PartNum Not used.

SeqNum Optional. A user-specified, item-level sequence number that the application can use to sequence
messages in this stream.

secondarySeqNum Not used.

PermissionData Not used.

extendedHeader Not used.

NameType Not used.

Name Required. The name of this message must be ConsumerStatus.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. The payload is a Map whose entries contain the Source Mirroring status for each service. For
the full structure, refer to Section 4.3.2.

Table 22: Source Directory Generic Message

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 43
EMAC380UMRDM.240

4.3 Data

4.3.1 Source Directory Refresh and Update Payload
A list of services is represented by a Map. Each MapEntry represents a known service and is uniquely identified by its ServiceId (i.e., its
key).

The information about each service is represented as a FilterList. Each FilterEntry contains one of six different categories of
information. These categories should correspond to the Filter member of the refresh or update. These categories are described in Table
24.

Figure 7. Source Directory Refresh and Update Message Payload

There are six categories of information about a service, each represented by one FilterEntry. Categories can be added or updated in
update messages (note that the clear action FilterEntry.Clear is not used, and that the Info category should not change) for Directory and
Dictionary domain message models as part of a reissue. None of these categories use permission data. In the following table, the description
for each FilterEntry includes whether the content is extensible.

KEY TYPE CONTAINER TYPE PERMISSION DATA DESCRIPTION

UInt for a service ID FilterList Not used Contains information for each known service. The
key is the service’s ServiceId.

Table 23: Source Directory Map Contents

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 44
EMAC380UMRDM.240

FILTERENTRY ID
(CORRESPONDING FILTER BIT-VALUE) TYPE DESCRIPTION

SERVICE_INFO_ID=
(SERVICE_INFO_FILTER=)

ElementList Provider applications must be able to provide
this information.
Identifies a service and its available data. This
content is extensible.
Refer to Section 4.3.1.1.

SERVICE_STATE_ID
(SERVICE_STATE_FILTER=

ElementList Provider applications must be able to provide
this information.
Describes the current state of a service (i.e., the
service’s current ability to provide data). Can also
change the status of all items associated with this
service. This content is not extensible.
The effects of this category occur immediately.
Therefore, the initiating UpdateMsg should set
DoNotConflate to true.
Refer to Section 4.3.1.2.

SERVICE_GROUP_ID=
(SERVICE_GROUP_FILTER=)

ElementList Manages group information. Can change the
status of a group of items or merge items from one
group to another. This content is not extensible.
The effects of this category occur immediately and
only affect existing items. Therefore, the initiating
UpdateMsg should set DoNotConflate and
DoNotCache to true.
Refer to Section 4.3.1.3.

SERVICE_LOAD_ID=
(SERVICE_LOAD_FILTER=)

ElementList Information about the current allowable workload
of this service, including how many items are
currently being serviced. This content is
extensible.
Optionally, the initiating UpdateMsg can set
DoNotConflate to true.
Refer to Section 4.3.1.4.

SERVICE_DATA_ID=
(SERVICE_DATA_FILTER=)

ElementList Includes broadcast data that applies to all items
requested from that service. This information is
typically provided in a dedicated UpdateMsg and
sent independently of other filter entries. The data
filter is commonly used with ANSI Page-based
data. This content is extensible.
Flag values DoNotConflate and DoNotCache
can optionally be set to true to prevent conflation
and caching of this content.
Refer to Section 4.3.1.5.

SERVICE_LINK_ID
(SERVICE_LINK_FILTER)

Map Provides information about individual upstream
sources that provide data for this service. This is
primarily used by systems that aggregate sources
(such as the Refinitiv Real-Time Advanced Data
Hub) for identification and load balancing, and is
not required to be processed by a consumer
application. This content is not extensible.
Refer to Section 4.3.1.6.

Table 24: Source Directory MapEntry Filter Entries

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 45
EMAC380UMRDM.240

4.3.1.1 Source Directory Info Filter Entry
The Info filter entry (SERVICE_INFO_FILTER, SERVICE_INFO_ID) conveys information that identifies a service and the content it can
provide. This includes information about provided domain types (e.g., Market Price, Market By Order), available QoS, and the names of any
dictionaries required to parse the published content.

The Info FilterEntry should be present when a service is first added, and should not be changed as long as the service remains in the
list.

If a FilterEntry element uses a default value, it is included in the element’s description.

NOTE: The Refinitiv Real-Time Advanced Data Hub does not track services that are brought down. If you bring up a service after having
brought it down, you must again include the Info filter entry.

ELEMENT NAME TYPE RANGE/
EXAMPLE DESCRIPTION

Name ASCII e.g., IDN_RDF Required. Specifies the service’s name. This will
match the concrete service name or the service group
name that is in the Map.Key.

Vendor ASCII e.g., Refinitiv Specifies the name of the vendor that provides the data
for this service.

IsSource UInt 0 | 1 Specifies whether the service aggregates content from
multiple sources. Available values are:
• 0: The service aggregates multiple sources into a

single service. This is the default behavior.
• 1: The service is provided directly by the original

publisher

Capabilities Array of UInt e.g., [5, 6] Required. Lists the domains which this service can
provide. Note that the UInt MesageModelType is
extensible, using values defined in this guide (i.e., 1-
255).
For example, a list containing MMT_DICTIONARY (5)
and MMT_MARKET_PRICE (6) indicates a consumer
can request dictionaries and Market Price data from
this service.

DictionariesProvided Array of ASCII e.g., RWFFld Lists the Dictionary names that this service can
provide. A consumer can obtain these dictionaries by
requesting them by name on the MMT_DICTIONARY
domain.
For details, refer to Chapter 5, Dictionary Domain.

DictionariesUsed Array of ASCII e.g., RWFFld,
RWFEnum

Conditional. Lists the Dictionary names that might be
required to fully process data from this service.
Whether or not the dictionary is required depends on
the consumer’s needs. For example: if the consumer is
not a display application, it might not need an
Enumerated Types Dictionary.
For details, refer to Chapter 5, Dictionary Domain.

Table 25: Source Directory Info Filter Entry Elements

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 46
EMAC380UMRDM.240

QoS Array of QoS e.g., Real-time,
TickByTick

Specifies the available Qualities of Service (QoS).
• If the data comes from one source, there will

usually be only one QoS.
• If there are multiple sources, more than one QoS

may be available.
The default QoS is Realtime, Tick-By-Tick. Thus. if a
QoS is not provided, the Transport API assumes the
service provides a QoS of Realtime, Tick-By-Tick.
For more information about QoS use and handling,
refer to the Enterprise Message API C++ Edition
Reference Guide.

SupportsQoSRange UInt 0 | 1 Indicates whether the provider supports a QoS range
when requesting an item.
If supported, a consumer can indicate an acceptable
range via ReqMsg.Qos.
• 0: The provider does not support QoS range

requests. This is the default behavior.
• 1: The provider supports QoS range requests.

ItemList ASCII Specifies the name of a SymbolList (i.e., a specific item
requested to get the names of all items available for
this service). If it is not present, this feature is not
supported. The consumer requests this item via the
MMT_SYMBOL_LIST domain (See Chapter 11,
Symbol List Domain).

SupportsOutOfBandSnapshots UInt 0 | 1 Indicates whether Snapshot requests can still be made
after reaching the OpenLimit (refer to Section 4.3.1.4).
• 0: Snapshot requests cannot be made if the

OpenLimit is reached.
• 1: Snapshot requests can be made even when the

OpenLimit is reached. This is the default behavior.

AcceptingConsumerStatus UInt 0 | 1 Indicates whether a service can accept and process
messages related to Source Mirroring (refer to Section
4.2.4).
• 0: The service cannot accept and process

messages related to Source Mirroring.
• 1: The service can accept and process messages

related to Source Mirroring. This is the default
behavior.

ELEMENT NAME TYPE RANGE/
EXAMPLE DESCRIPTION

Table 25: Source Directory Info Filter Entry Elements (Continued)

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 47
EMAC380UMRDM.240

4.3.1.2 Source Directory State Filter Entry
The State filter entry (SERVICE_STATE_FILTER, SERVICE_STATE_ID) conveys information about the current state of a service. This
information usually has some bearing on the availability of data from a service. If a service becomes temporarily unavailable or becomes
available again, consumers are informed via updates to this category.

A State filter entry should be present in the initial refresh, and then updated whenever needed.

The Status element can change the state of items provided by this service. Prior to changing a service status, Refinitiv recommends that you
issue item or group status messages to update item states. For example, before bringing down a service, a provider application should
change the Status element of all items to OmmState.ClosedRecover.

Any default behavior is explained in the Element’s description.

NOTE: The Refinitiv Real-Time Advanced Data Hub does not track services that are brought down. If you bring up a service after having
brought it down, you must include the Info filter entry (refer to Section 4.3.1.1).

ELEMENT NAME TYPE RANGE/EXAMPLE DESCRIPTION

ServiceState UInt 0 | 1 Required. Indicates whether the original provider of the data
is available to respond to new requests. Changes to
ServiceState do not affect streams that are already open.
Available values are:
• 0: Service is Down
• 1: Service is Up
Refer to Section 4.4.3.

AcceptingRequests UInt 0 | 1 Indicates whether the immediate provider can accept new
requests and/or handle reissue requests on already open
streams. Existing streams remain unaffected, however new
requests may be rejected. AcceptingRequests defaults to
1.
Available values are:
• 0: The provider cannot accept new requests on existing

streams.
• 1: The provider can accept new requests on existing

streams.
Refer to Section 4.4.3.

Status State e.g., OmmState.Open,
OmmState.Ok,
OmmState.None, “OK”

Specifies a status change to apply to all items provided by
this service. It is equivalent to sending a StatusMsg for each
item.
The StreamState is only allowed to be OmmState.Open or
OmmState.ClosedRecover.
This status only applies to item streams that have received a
refresh or status of OPEN/OK.
Refer to Section 4.4.4.1.

Table 26: Source Directory State FilterEntry Elements

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 48
EMAC380UMRDM.240

4.3.1.3 Source Directory Group Filter Entry
The Group filter entry (SERVICE_GROUP_FILTER, SERVICE_GROUP_ID) conveys item group status and item group merge information.
Every item stream is associated with an item group as defined by the ItemGroup provided with the item’s RefreshMsg or StatusMsg. If
some kind of change impacts all items within the same group, only a single group status message need be provided. For more information
on item group use and handling, see the Enterprise Message API C++ Edition Developers Guide.

If multiple group FilterEntrys are received in a single FilterList, then they should be applied in the order in which they were received.

Any default behavior is explained in the Element’s description.

ELEMENT NAME TYPE RANGE/EXAMPLE DESCRIPTION

Group Buffer e.g., 1.26.102 Required. Specifies the ItemGroup with which this
information is associated.
This is typically represented as a series of 2-byte unsigned
integers (i.e., two-byte unsigned integers written directly next
to each other in the buffer). The example provided in the
RANGE / EXAMPLE column of this table shows such a
series, with inserted dots to help indicate two-byte value.
When encoded into a buffer, do not include these dots.

MergedToGroup Buffer e.g., 1.26.110 Changes all items whose group currently matches the
Group element to the specified MergedToGroup.

Status State e.g.,
StreamState::OpenEnum,
DataState::OkEnum,
StatusCode::NoneEnum,
OK

A status change to be applied to all items whose ItemGroup
matches the Group element. It is equivalent to sending a
StatusMsg to each item.
• The StreamState is only allowed to be

OmmState.Open or OmmState.ClosedRecover.
• If you need to convey group status Text or code

information without changing the data state, use the
value DataState::NoChangeEnum.

• If present in the same message as a MergedToGroup
element, this change should be applied before the
merge.

This change only applies to item streams that have received
a refresh or status with a state of OPEN/OK.
Refer to Section 4.4.4.2.

Table 27: Source Directory Group FilterEntry Elements

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 49
EMAC380UMRDM.240

4.3.1.4 Source Directory Load Filter Entry
The Load filter entry (SERVICE_LOAD_FILTER, SERVICE_LOAD_ID) conveys information about the service’s workload. If multiple
services can provide desired data, a consumer can use service workload information to help decide which to use. None of these elements
are required, nor have a default value.

4.3.1.5 Source Directory Data Filter Entry
The Data filter entry (SERVICE_DATA_FILTER, SERVICE_DATA_ID) conveys information that should be applied to all items associated
with the service. This is commonly used for services that provide ANSI Page-based data. These elements has do not have a default value.

ELEMENT NAME TYPE RANGE/
EXAMPLE DESCRIPTION

OpenLimit UInt 0 – MAXUINT Maximum number of streaming items that the client is allowed to
open for this service.
If the service supports out-of-band snapshots, snapshot requests do
not count against this limit (refer to Section 4.3.1.1).

OpenWindow UInt 0 - MAXUINT Maximum number of outstanding requests (i.e., requests for items not
yet open) that the service will allow at any given time.
If OpenWindow is 0, the behavior is the same as setting
AcceptingRequests to 0 and no open item request is accepted. The
provider should not assume that the OpenWindow becomes
effective immediately.

LoadFactor UInt 0-65,535 A number indicating the current workload on the source providing the
data.
This number and the means of its calculation vary based on the
system (i.e., bandwidth usage, CPU usage, number of clients, etc).
The only requirements are that:
• The LoadFactor should be calculated the same way for all

services in a system.
• A more heavily-loaded service should have a higher LoadFactor

than one that is less loaded.

Table 28: Source Directory Load FilterEntry Elements

ELEMENT NAME TYPE RANGE/EXAMPLE DESCRIPTION

Type UInt • Time(1)
• Alert (2)
• Headline (3)
• Status (4)
• Reserved values : 0 - 1023

Conditional. You must include Type when data is present.
Explains the content of the Data.

Data Any Data Type Data that should be applied to all items from the service;
commonly used for services providing ANSI Page-based data.
The contents of this element should be applied as an update to
every item open for this stream. After the data fans out, it does
not need to be cached as part of the source directory.

Table 29: Source Directory Data FilterEntry Elements

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 50
EMAC380UMRDM.240

4.3.1.6 Source Directory Link Filter Entry
The Link filter entry (SERVICE_LINK_FILTER, SERVICE_LINK_ID) conveys information about the upstream sources that provide data to a
service.

This information is represented as a Map, where each MapEntry represents one upstream source. The map entry key is the name
associated with the communication link, and is of type ASCII. This name is scoped globally, and if multiple sources have the same name,
they are assumed to be identical and the aggregating system will balance requests among them.

A typical consumer application can treat this entry as mainly informational. The consumer should use the State category to make
programmatic decisions about service availability and status.

Any default behavior is explained in the Element’s description.

ELEMENT NAME TYPE RANGE/EXAMPLE DESCRIPTION

Type UInt 1 | 2 Indicates whether the upstream source is interactive or
broadcast. This does not describe whether the service itself is
interactive or broadcast.
• 1: The upstream source is interactive (this is the default).
• 2: The upstream source is a broadcast source.

LinkState UInt 0 | 1 Required. Indicates whether the upstream source is up or
down
• 0: The upstream source is down.
• 1: The upstream source is up.

LinkCode UInt 0 - 3 Provides additional information about the upstream source.
• 0: None (this is the default)
• 1: Ok
• 2: RecoveryStarted
• 3: RecoveryCompleted

Text ASCII N/A Explains the LinkState and LinkCode. Text defaults to “”.

Table 30: Source Directory Link FilterEntry Map Contents

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 51
EMAC380UMRDM.240

4.3.2 Source Directory ConsumerStatus Generic Message Payload

The directory data structure for the ConsumerStatus message is a Map. Each MapEntry sends status to one service and is uniquely
identified by ServiceId (its key). Each entry contains an ElementList with one ElementEntry that indicates how the provider is used.
MapEntrys do not use permission data.

Figure 8. Source Directory Generic Message Payload

NOTE: GenericMsg(s) are supported for the DIRECTORY Refinitiv Domain Model only for sending / receiving information related to
ConsumerStatus/Source Mirroring Mode.

ELEMENT NAME TYPE RANGE/EXAMPLE DESCRIPTION

SourceMirroringMode UInt 0 - 2 Required. Indicates how the downstream component uses the
service. There is no default setting. SourceMirroringMode
can have any of the following values:
• 0: ActiveNoStandby. The downstream device uses the data

from this service, and does not receive it from any other
service.

• 1: ActiveWithStandby. The downstream device uses the data
from this service, but also receives it from another service.

• 2: Standby. The downstream device receives data from this
service, but actually uses data from another service.

A reply from the provider application is not needed because this
is for informational use only.

Table 31: Source Directory Generic Message MapEntry Elements

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 52
EMAC380UMRDM.240

4.4 Special Semantics

4.4.1 Multiple Streams
Unlike other MessageModelTypes, two directory streams can be open with identical message key information. It is also permissible to
change an open stream’s filter.

4.4.2 Service IDs
Most Refinitiv Domain Model messages can be associated with a service (although Login and Directory typically are not). For better
bandwidth utilization, the RSSL transport optimizes the service name into a two byte service ID. The ServiceId is only unique within a
single channel.

4.4.3 ServiceState and AcceptingRequests
The ServiceState and AcceptingRequests elements in the State filter entry work together to indicate the ability of a particular service
to provide data:

• ServiceState indicates whether the source of the data is accepting requests.

• AcceptingRequests indicates whether the immediate upstream provider (the provider to which the consumer is directly
connected) can accept new requests. If False, new requests are rejected while existing streams remain unaffected (reissue
requests can still be made for any item streams that are currently open to the provider).

 The values of ServiceState and AcceptingRequests do not affect existing streams and do not imply anything about the data quality of
existing streams.

SERVICESTATE ACCEPTINGREQUESTS MEANING

Up(1) Yes (1) New requests and reissue requests can be successfully processed.

Up(1) No (0) Although the source of data is available, the immediate provider is not accepting new
requests. However, reissue requests on already open streams can be processed.

Down (0) Yes (1) The source of data is not available. The immediate provider, however, can accept the
request and forward it when the source becomes available.

Down (0) No (0) Neither the source nor the immediate provider is accepting new requests.

Table 32: ServiceState and AcceptingRequests

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 53
EMAC380UMRDM.240

4.4.4 Service and Group Status Values
The Status elements in the State and Group FilterEntries are transient. Their values should be applied to all existing streams. The values
should not be cached and should not affect any new requests.

4.4.4.1 Service Status
Providers can use a directory’s ServiceState.Status element to efficiently change the state of all of a service’s existing streams with a single
message. The ServiceState.Status does not apply to requests that are currently pending a first refresh or status response (for details, refer
to Section 2.3) message. Enterprise Message API consumer implementation normally fans out state from the Status Element to all items
associated with the service. When Enterprise Message API does this, it will not forward this Element to the application. Instead, the
application receives a StatusMsg for each item from the service. The other elements from the ServiceState FilterEntry will still be sent to
the application.

4.4.4.2 Group Status
The Group FilterEntry can be used to efficiently change the state of a large number of items with a single message. The Group.Status does
not apply to requests that are currently pending a first refresh or status response message. Enterprise Message API consumer
implementation normally fans out group messages to all items associated with the group. When Enterprise Message API does this, it will not
forward this FilterEntry to the application. Instead, the application will receive a StatusMsg for each item in the group.

4.4.5 Removing a Service
If a provider needs to remove a service from the list of known services, it should send the service’s MapEntry with the action set to
MapEntry.Delete. A consumer should place all open items associated with this service in the OmmState.ClosedRecover.

All services associated with a Source Directory stream are removed if:

• The connection between the provider and consumer is closed or lost

• The provider sends a state of OmmState.Closed or OmmState.ClosedRecover on the Source Directory stream.

• The provider sends a message with a ClearCache on a StatusMsg on the Source Directory stream.

If any of these events occurs, all of the items for the service(s) are automatically cleaned up and considered to have a ClosedRecover status.

NOTE: Though not best practice, some applications may continue to store service information, even after a service is removed. If this is the
case, the application should advertise the service as Down and not accepting requests.

4 Source Directory Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 54
EMAC380UMRDM.240

4.4.6 Automatic Request from Enterprise Message API Consumer
Enterprise Message API internal consumer implementation will always automatically request a Directory with the Filter set to
SERVICE_INFO_FILTER, SERVICE_STATE_FILTER, or SERVICE_GROUP_FILTER. This ensures that Enterprise Message API can:

• Map service IDs to names

• Fanout SERVICE_STATE_ID.Status and SERVICE_GROUP_ID.Status

• Apply SERVICE_GROUP_ID.MergedToGroup

The Directory request is sent after the Login is successful. Response message for this directory request are not forwarded to the consumer
application. If the consumer wants source directory information, it is required to make its own request for the Directory.

4.4.7 Client Requests Non-Existing Service Directory
If the client sends a directory request without specifying service name or service ID, the directory response includes all available services. If
the client specifies a service name or service ID in a directory request, it receives the directory response for just the requested service. If the
requested service name or service ID is not available, Enterprise Message API should send a service directory containing an empty map
entry in the payload. If the service becomes available later, the client receives an update message which contains the required service
information.

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 55
EMAC380UMRDM.240

5 Dictionary Domain

5.1 Description

The Open Message Model can optimize bandwidth usage by reducing or removing the need to constantly communicate well-known
information (e.g., names and data types associated with information in a FieldList). Using these techniques, information is instead
contained in a field dictionary, where the field list contains only FieldId references to information in the dictionary.

A provider application can indicate any dictionaries needed to parse published content. To reconstruct omitted information, consumer
applications reference required dictionaries when decoding. Dictionaries may be available locally (i.e., in a file) or available for request over
the network from an upstream provider.

The following dictionaries provide domain models for network requests:

• Field Dictionary: Stores data referenced by the FieldList. Each FieldId in a FieldEntry corresponds to an entry in the Field
Dictionary, which provides information such as the field’s name (e.g., BID) and data type (e.g., Int). Additional information (such as
rippling fields and expected cache-sizing requirements) are also present.

• Enumerated Types Dictionary: Contains tables defining values for enumerated values of type Enum. Each table indicates the
FieldId values of all fields that use the data in the table, as well as the possible enumerated values. For example, a field indicating the
currency of an item will use a table listing enumerations of various currencies. If a consumer decodes the value of that field (e.g., 840), it
can cross reference that value with its copy of the table. The entry the consumer finds will contain a string that the consumer can print
(e.g. USD), and possibly a more meaningful description as well.

NOTE: GenericMsg(s) are not supported for the Dictionary domain model.

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 56
EMAC380UMRDM.240

5.2 Decoding Field List Contents with Field and Enumerated Types Dictionaries

By itself, a FieldEntry contains only the FieldId and its associated encoded value in Data. Because the Enterprise Message API
internally stores pre-decoded data, an application can easily decode a FieldEntry (without cross-referencing the FieldId to the correct
Field Dictionary to determine its type).

Figure 9. FieldList Referencing Field Dictionary

If the field’s type is DataTypeEnum::EnumEnum, there may be a table of values in the corresponding Enumerated Types Dictionary. The
consumer can then reference that information.

Figure 10. FieldEntry Referencing an Enumerated Types Table

The consumer, having decoded the enumerated value (e.g., 840), finds the correct table that defines the field and looks up the enumerated
value in that table. The value will have a displayable string associated with it (e.g., USD).

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 57
EMAC380UMRDM.240

5.3 Usage

5.3.1 Dictionary Request Message
A dictionary request message is encoded using ReqMsg and sent internally by the OmmConsumer in the constructor of this class. The
request indicates the name of the desired dictionary and how much information from that dictionary is needed.

Users can configure dictionary request messages using OmmConsumerConfig.addAdminMsg() to override the default dictionary request.

Though updates are not sent on dictionary streams, Refinitiv recommends that the consumer make a streaming request (setting
ReqMsg.InterestAfterRefresh to true) so that it is notified whenever the dictionary version changes.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DICTIONARY = 5

Interactions Required.
• InitialImage: true, Indicates an initial image is required.
• InterestAfterRefresh: true, Indicates a streaming request is required.
After receiving RefreshComplete, the consumer can only receive a Status response message. An
Update response message will never be received. Pause request is not supported.

QoS Not used.

worstQos Not used.

priorityClass Not used.

priorityCount Not used.

Priority Optional.

extendedHeader Not used.

ServiceName Required. Specifies the ServiceName of the service from which the consumer requests the dictionary.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

ServiceId Required. Specifies the ServiceId of the service from which the consumer requests the dictionary.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Not used.

Name Required. Specifies the Name of the desired dictionary as seen in the Source Directory response (refer to
Section 4.3.1.1).

Filter Required. The filter represents the desired verbosity of the dictionary. The consumer should set the
Filter according to how much information is needed:
• DICTIONARY_INFO = 0x00: Provides version information only.
• DICTIONARY_MINIMAL = 0x03: Provides information needed for caching.
• DICTIONARY_NORMAL = 0x07: Provides all information needed for decoding.
• DICTIONARY_VERBOSE = 0x0F: Provides all information (including comments).
Providers are not required to support the MINIMAL and VERBOSE filters.
For further details on Filter, refer to Section 5.4.1.

Identifier Not used.

Attrib Not used.

Table 33: Dictionary Request Message

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 58
EMAC380UMRDM.240

5.3.2 Dictionary Refresh Message
A Dictionary refresh message is encoded and sent by OMM Interactive and non-interactive provider applications and provides the consumer
with the content of the requested dictionary. A dictionary refresh may be encoded in one or multiple parts.

Payload Not used.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DICTIONARY = 5

Indications Optional:
• DoNotCache: true, Indicates the application should not cache
• ClearCache: true, Indicates the application should clear the cache
• Complete: true, Indicates a refresh complete

State Required. Indicates stream and data state information.

QoS Not used.

SeqNum Optional. A user-specified sequence number that the application can use for sequencing messages
within this stream.

ItemGroup Not used.

PermissionData Conditional. Used if the provided dictionary requires permissioning.

extendedHeader Not used.

ServiceId Required. Specifies the ServiceId of the service that provides the dictionary.

NOTE: The consumer application should set either the ServiceName or ServiceId of the service, but
not both.

ServiceName Required. Specifies the name of the service that provides the dictionary.

NOTE: The consumer application should set either the ServiceName or ServiceId of the service, but
not both.

NameType Not used.

Name Required. Specifies the name of the provided dictionary, as advertised as supported in the Source
Directory response (refer to Section 4.3.1.1).

Filter Required. The filter represents verbosity of dictionary in the response message. When possible, this
should match the filter set in the consumer’s request. For additional details, refer to the Filter member
in Section 5.3.1.

Identifier Not used.

Attrib Not used.

Payload Required. The payload structure varies depending on the dictionary’s type. However, the payload is
typically a Series containing an ElementList, while the series SummaryData indicates the specific
dictionary type.

Table 34: Dictionary Refresh Message

COMPONENT DESCRIPTION / VALUE

Table 33: Dictionary Request Message (Continued)

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 59
EMAC380UMRDM.240

5.3.3 Dictionary Status Message
A dictionary status message is encoded using StatusMsg and sent by Open Message Model Interactive and non-interactive provider
applications. This message can indicate changes to a dictionary’s version.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_DICTIONARY = 5

State Optional.

ItemGroup Not used.

Indications Optional:
• ClearCache: true, Indicates the application should clear the cache

PermissionData Conditional. Used if the provided dictionary requires permissioning.

extendedHeader Not used.

ServiceId Not used.

NameType Not used.

Name Not used.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Not used.

Table 35: Dictionary Status Message

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 60
EMAC380UMRDM.240

5.4 Data

5.4.1 Filter
While Dictionary’s Filters values correlate to a bitmap, the Enterprise Message API supports only the combinations in the following table. For
example, a Dictionary’s Filter cannot be 0x2 or 0x6.

Dictionary providers are required to support DICTIONARY_INFO and DICTIONARY_NORMAL filers. Filter can be changed for Directory
and Dictionary domain message models as part of a reissue. It cannot be changed in other domain message models. If an unsupported
Filter is requested, the provider may do either of the following:

• Change the Filter in response message to a supported one.

• Send a Closed State in the response message.

MASK PROVIDER MUST SUPPORT
IN RESPONSE MESSAGE DESCRIPTION

DICTIONARY_INFO=0x0 Yes Dictionary summary information, such as DictionaryType and
version. The response Payload.SummaryData will contain data
but the response payload will contain no entries.

DICTIONARY_MINIMAL=0x3 No DICTIONARY_INFO plus the minimum data needed to cache or
convert data.

DICTIONARY_NORMAL=0x7 Yes DICTIONARY_MINIMAL plus all other data, except descriptions
and comments.

DICTIONARY_VERBOSE=0xF No All available data.

Table 36: Dictionary's Filter

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 61
EMAC380UMRDM.240

5.4.2 Refresh Message Summary Data
A dictionary’s SummaryData is an ElementList that can be used by a consumer to find out if it needs an updated dictionary or if it needs
the dictionary at all. SummaryData is extensible and can include other elements.

5.4.3 Response Message Payload
The Response Message (refer to Section 2.3) payload can vary widely, based on its DictionaryType. The payload is typically a Series of
ElementLists, but can also be XML or Opaque data. For further details on the response message payloads, refer to Section 5.5.1 and
Section 5.6.1.

Some DictionaryTypes also have external file representations of their data. For details about the data of each DictionaryType, refer to
Section 5.5.2 and Section 5.6.2.

NAME TYPE RANGE/EXAMPLE DESCRIPTION

Version ASCII “1.0.1” Required. Specifies the version of
the provided dictionary.
For additional details on dictionary
versions, refer to Section 5.7.2.

NOTE: The Enumerated Types
dictionaries populate the Version
element using information from the
DT_Version tag.

Type UInt Total range is from 0 to 255, where values 0 - 127 are
reserved and values 28-255 are extensible.
• DICTIONARY_FIELD_DEFINITIONS = 1
• DICTIONARY_ENUM_TABLES = 2
• DICTIONARY_RECORD_TEMPLATES = 3
• DICTIONARY_DISPLAY_TEMPLATES = 4
• DICTIONARY_DATA_DEFINITIONS = 5
• DICTIONARY_STYLE_SHEET = 6
• DICTIONARY_REFERENCE = 7

Required. Indicates the type of
dictionary contained in the payload.

DictionaryId Int Total range is from -16383 to 16383, where:
• Values 0 to 16383 are reserved by Refinitiv
• The value 1 corresponds to the

RDMFieldDictionary.
• The value 0 signifies ‘Unspecified’
• Values -1 to -16383 are Extensible

Enterprise Message API can use
DictionaryId in field lists and series
to associate fields with field
definitions or enumerations. Refer to
Section 5.4.4.
DictionaryId defaults to 0.

RT_Version ASCII “1.0.1” Optionally sent only with the
enumerated type dictionary.
RT_Version identifies which field
dictionary should be used with this
enumerated type dictionary.

DT_Version ASCII “1.0.1” Optionally sent only with the
enumerated type dictionary.
DT_Version conveys the display
template version.

Table 37: Dictionary Map.SummaryData

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 62
EMAC380UMRDM.240

5.4.4 DictionaryId
The first FieldList provided for an item always has a DictionaryId. While a FieldList can be parsed without a Dictionary, to interpret
the data, the FieldList’s DictionaryId must be associated with a Dictionary. The DictionaryId (provided in a Dictionary response
message’s Payload.SummaryData) associates a FieldList’s DictionaryId to a “family” of Dictionaries.

A Dictionary family includes a single FieldDefinition Dictionary. Enumeration tables for a single FieldDefinition Dictionary must be
consolidated into a single EnumTable Dictionary that has the same DictionaryId as the FieldDefinition Dictionary. The Dictionary family may
also include a single RecordTemplate Dictionary and a single DisplayTemplate Dictionary.

The DictionaryId is 0 for StyleSheet and Reference. A DictionaryId setting of 0 means unspecified, so the Dictionary is not used for
parsing, interpreting, or displaying FieldLists. For example, a “TimeZone” reference dictionary may include table information about every
world time zone. Because timezone information is not needed to parse FieldLists, there is no need to assign a DictionaryId to the
“TimeZone” Dictionary. Thus, the value of its DictionaryId is set to 0 (i.e., unspecified).

DictionaryIds are globally scoped can have the range of -16383 to 16383. Though DictionaryIds 0 through 16383 are reserved for use by
Refinitiv, applications can provide their own dictionaries by selecting a DictionaryId between -1 and -16383. If a single FieldList needs to
use fields defined in two dictionaries, the FieldList can specify a dictionary switch using 0 for the Field ID. For details, refer to the
Enterprise Message API C++ Edition Developers Guide.

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 63
EMAC380UMRDM.240

5.5 Field Dictionary

5.5.1 Field Dictionary Payload
The payload of a Field Dictionary Refresh Message consists of a Series where each series entries contains a ElementList. Each
SeriesEntry represents a row of information in the dictionary. The ElementList contained in each series entry provides information
about an element of the row.

Figure 11. Field Dictionary Payload

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 64
EMAC380UMRDM.240

Element entries do not have default values.

NAME TYPE LEAST
VERBOSITY RANGE/EXAMPLE DESCRIPTION

NAME ASCII MINIMAL e.g., “PROD_PERM” Equivalent to the field’s ACRONYM
(i.e., Short Name).

FID Int MINIMAL -32768 to 32767 The field’s FieldId.

RIPPLETO Int MINIMAL -32768 to 32767 If the field ripples, this is the FieldId
of the field it ripples to.
A value of 0 indicates no rippling.
For a description of rippling, refer to the
Enterprise Message API C++
Edition Developers Guide.

TYPEa

a. These elements are specific to the Marketfeed format and can be used in converting to or from it. They can otherwise be ignored.

Int MINIMAL e.g., INTEGER The data type of the field for the
Marketfeed format.

LENGTHa UInt MINIMAL 0 to 65535 The maximum string length of the field
for the Marketfeed format.

RWFTYPE UInt MINIMAL e.g., Int The data type (DataType) of the field.

RWFLEN UInt MINIMAL 0 to 65535 The maximum length needed to cache
the encoded value (the value found in
the FieldEntry’s encData buffer).
This is only a suggestion and is not
enforced.
A length of 0 implies that the maximum
possible size for that type should be
used for caching.

ENUMLENGTH UInt NORMAL 0 to 65535 Used for fields of type Enum. This is
the length of the DISPLAY element in
its Enumerated Types table (See
Section 5.6.1).

LONGNAME ASCII NORMAL e.g., “PERMISSION” Equivalent to the field’s DDE
ACRONYM (i.e., Long Name).

Table 38: Field Dictionary Element Entries

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 65
EMAC380UMRDM.240

5.5.2 Field Dictionary File Format
The RDMFieldDictionary file format is a plain-text table. Each row represents one field, and each column a datum about that field. Each row
is separated with a line break and columns are separated by whitespace. Lines beginning with an exclamation point (!) are comments and
are ignored.

Figure 12. Field Dictionary File Format Sample

Several tagged attributes are available at the beginning of the file. These attributes provide versioning information about the dictionary in the
file and are processed when loading from a file-based dictionary. Some of this information is conveyed along with the domain model
representation of the dictionary. Tags may be added as future dictionary versions become available.

For the RDMFieldDictionary, an example of these tags are shown below.

Figure 13. Field Dictionary Tagged Attributes Sample

!ACRONYM DDE ACRONYM FID RIPPLES TO FIELD TYPE LENGTH RWF TYPE RWF LEN

PROD_PERM "PERMISSION" 1 NULL INTEGER 5 UINT64 2

RDNDISPLAY "DISPLAYTEMPLATE" 2 NULL INTEGER 3 UINT32 1

DSPLY_NAME "DISPLAY NAME" 3 NULL ALPHANUMERIC 16 RMTES_STRING 16

RDN_EXCHID "IDN EXCHANGE ID" 4 NULL ENUMERATED 3 (3) ENUM 1

TIMACT "TIME OF UPDATE" 5 NULL TIME 5 TIME 5

TRDPRC_1 "LAST " 6 TRDPRC_2 PRICE 17 REAL64 7

TRDPRC_2 "LAST 1" 7 TRDPRC_3 PRICE 17 REAL64 7

TRDPRC_3 "LAST 2" 8 TRDPRC_4 PRICE 17 REAL64 7

TRDPRC_4 "LAST 3" 9 TRDPRC_5 PRICE 17 REAL64 7

TRDPRC_5 "LAST 4" 10 NULL PRICE 17 REAL64 7

!tag Filename RWF.DAT

!tag Desc RDFD RWF field set

!tag Type 1

!tag Version 4.00.14

!tag Build 002

!tag Date 18-Nov-2010

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 66
EMAC380UMRDM.240

5.5.2.1 Field Dictionary Tag Attributes
The following table describes tag attributes and indicates whether they are used when encoding the domain representation of the file.

5.5.2.2 Field Dictionary Columns
The columns in the field dictionary correspond to the ElementEntry names used while encoding and decoding the Field Dictionary:

TAG ATTRIBUTE DESCRIPTION

Filename The original name of the file as created by Refinitiv. This typically will not match the current name of the file,
RDMFieldDictionary.
Filename is not used when encoding the domain representation of the field dictionary.

Desc Describes the dictionary.
Desc is not used when encoding the domain representation of the field dictionary.

Type Stores the dictionary type associated with this dictionary. For a field dictionary, this should be
DICTIONARY_FIELD_DEFINITIONS = 1. Other types are defined in Section 5.4.
Type is used when encoding the domain representation of the field dictionary.

Version Stores version information associated with this dictionary.
Version is used when encoding the domain representation of the field dictionary.

Build Stores internal build information.
Build is not used when encoding the domain representation of the field dictionary.

Date Stores dictionary release date information.
Date is not used when encoding the domain representation of the field dictionary.

Table 39: Field Dictionary File Tag Information

COLUMN NAME IN FILE REFINITIV WIRE FORMAT
ELEMENT NAME NOTES

ACRONYM NAME The abbreviated name corresponding to the field.

DDE ACRONYM LONGNAME A longer version of the name represented by the Acronym.

FID FID The Field IDentifier value.

RIPPLES TO RIPPLETO The file format uses the ACRONYM of the target field, rather than the
rows FieldId.
If the field does not ripple, this should be NULL.

FIELD TYPE TYPE The Marketfeed type associated with this field.

LENGTH LENGTH (ENUMLENGTH) The Marketfeed length associated with the field.

RWF TYPE RWFTYPE The Refinitiv Wire Format type (DataType) associated with the field.

RWF LEN RWFLEN A caching length hint associated with this field.

Table 40: Field Dictionary File Column Names and ElementEntry Names

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 67
EMAC380UMRDM.240

5.5.2.3 RWFTYPE Keywords
The following keywords are supported for the RWFTYPE:

KEYWORD DATA TYPE

ANSI_PAGEa ANSI_Page

ARRAYa Array

ASCII_STRING ASCII

BUFFER Buffer

DATE Date

DATETIMEa DateTime

DOUBLEa

a. Type is Refinitiv Wire Format-Only and does not have a Marketfeed equivalent.

Double

ELEMENT_LIST, ELEM_LISTa ElementList

ENUM Enum

FIELD_LISTa FieldList

FILTER_LISTa FilterList

FLOATa Float

INT, INT32, INT64 Int

MAPa Map

OPAQUE Opaque

QOSa QoS

REAL, REAL32, REAL64 Real

RMTES_STRING RMTES

SERIESa Series

STATUSa Stream

TIME Time

UINT, UINT32, UINT64 UInt

UTF8_STRING UTF8

VECTORa Vector

XMLa XML

Table 41: Field Dictionary Type Keywords

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 68
EMAC380UMRDM.240

5.5.2.4 FIELD TYPE Keywords
The RDMFieldDictionary’s RWFTYPE and RWFLEN are derived from the field dictionaries used in Marketfeed.Valid keywords for the
Marketfeed Field Type are INTEGER, ALPHANUMERIC, ENUMERATED, TIME, TIME_SECONDS, DATE, or PRICE.

Thee following Refinitiv Wire Format types and values help ensure that data is not truncated when converted from Marketfeed to Refinitiv
Wire Format. If converting Refinitiv Wire Format to Marketfeed, an Open Message Model provider application should ensure that Refinitiv
Wire Format data does not overflow the Marketfeed length.

For ALPHANUMERIC types, if the data does not require RMTES, then the ASCII_STRING type should be used instead of the
RMTES_STRING type.

Fields that cannot be converted to Marketfeed should have the Marketfeed type NONE and length 0.

The table below lists the mappings from FIELD TYPE to the RWFTYPE keyword. All are used in RDMFieldDictionary and are safe.

FIELD TYPE LENGTH RWFTYPE RWFLEN NOTES

ALPHANUMERIC 14 ASCII_STRING 14 RIC/SYMBOL

ALPHANUMERIC 21 ASCII_STRING 21 RIC/SYMBOL

ALPHANUMERIC 28 ASCII_STRING 28 RIC/SYMBOL

ALPHANUMERIC 1-255 RMTES_STRING 1-255 length <= 3 is technically ASCII

ENUMERATED 2-3 (1-8) ENUM 1 Enum values 0 - 255

ENUMERATED 5 (3-8) ENUM 2 Enum values 0 - 65535

BINARY 3 UINT32 2 Base64 encoded 2-byte unsigned int

BINARY 4 UINT32 3 Base64 encoded 3-byte unsigned int

BINARY 43 BUFFER 32 Base64 encoded buffer

BINARY 171 BUFFER 128 Base64 encoded buffer

DATE 11 DATE 4 Day, month, year

TIME_SECONDS 8 TIME 5 Time in hour, minute, second, and millisecond

TIME 5 TIME 5 Time in hour, minute, and second

PRICE 17 REAL 9 Real can represent values with fractional denominators,
trailing zeros, or up to 14 decimal positions.

INTEGER 15 REAL 7 Signed integer value, where trailing zero values can be
optimized off of the wire.

INTEGER 3 UINT 1 Unsigned int 0 - 255

INTEGER 5 UINT 2 Unsigned int 0 - 65535

INTEGER 10 UINT 5 Unsigned int 0 - (240-1)

INTEGER 15 UINT 8 Unsigned int 0 - (264-1)

INTEGER 15 UINT 4 Unsigned int 0 - (232-1)

Table 42: Marketfeed to Refinitiv Wire Format Mappings in RDMFieldDictionary

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 69
EMAC380UMRDM.240

5.5.2.5 Custom FIDs
There are a couple of recommendations for custom Field IDentifiers:

5.5.3 Specific Usage: RDF Direct and FieldDefinition Dictionary
The FieldDefinition Dictionary provided by RDF Direct is named “RWFFld”. It has a DictionaryId of 1.

All DataMasks are supported. DictionaryVerbose will return the same data as DictionaryNormal.

The response Payload.SummaryData includes Version, Type, and DictionaryId.

The RWFFld dictionary only uses the following types: INT32, INT64, INT, UINT32, UINT64, UINT, REAL32, REAL64, REAL, DATE, TIME,
ENUM, BUFFER, ASCII_STRING, RMTES_STRING.

FIELD TYPE LENGTH RWF TYPE RWF LEN NOTES

PRICE 17 REAL 9 Real can represent values with fractional denominators,
trailing zeros, or up to 14 decimal positions.

INTEGER 15 INT 8 Signed integer value that has one sign bit and 63 value bits.

Table 43: Marketfeed to Refinitiv Wire Format Mappings in RDMFieldDictionary

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 70
EMAC380UMRDM.240

5.6 Enumerated Types Dictionary

5.6.1 Enumerated Types Dictionary Payload
The payload of an Enumerated Types Dictionary Refresh Message consists of a Series with each series entry (SeriesEntry) containing
an ElementList and representing a table in the dictionary. The ElementList in each entry contains information about each Enumerated
Type in the table.

Each ElementEntry has a type of Array, where there is one element for each column in the file: VALUE, DISPLAY, and MEANING. The
content of each Array corresponds to one Enumerated Type, so each array should contain the same number of entries.

Figure 14. Enumerated Types Dictionary Refresh Message Payload

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 71
EMAC380UMRDM.240

NAME TYPE LEAST
VERBOSITY

EXAMPLE
LIST DESCRIPTION

FIDS Array of Int NORMAL 15, 1084,
1085,…

The FieldId’s of all fields that reference this table.
These fields should have type Enum in the Field
Dictionary and use the values given in the VALUE
list. The OmmArray.FixedWidth should be 2
because each FieldId is a two-byte, signed integer
value.

VALUE Array of Enum NORMAL 826, 840, … Includes values that correspond to each Enumerated
Type. FieldEntries that use the table contain
these values. The OmmArray.FixedWidth should
be 2 since each enum is a two-byte, unsigned
integer value.

DISPLAY Array of StringASCII,
StringRMTES, or StringUTF8

NORMAL “GBP”, “USD”,… Brief, displayable names for each Enumerated Type.
When special characters are needed, the DISPLAY
column uses a hexadecimal value identified by using
hash marks instead of quotation marks (e.g.,
#42FE#).

MEANING Array of ASCII VERBOSE “UK pound
sterling”, “US
Dollar”,…

A longer description of each Enumerated Type.

NOTE: Providers do not need to provide this array
(even when verbosity is VERBOSE).

Table 44: Element Entries Describing Each Enumerated Type Table

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 72
EMAC380UMRDM.240

5.6.2 Enumerated Types Dictionary File Format
The enumtype.def file format is a plain-text set of tables. Rows are separated by lines and columns are separated by whitespace (excepting
quoted strings, as illustrated in Section 5.6.1). Lines that begin with an exclamation point (!) are comments and are ignored.

The file contains a set of tables, each with two sections:

1. A section with the list of FieldId values corresponding to all fields that use the table.

2. A section with the table of enumerated values and their respective display data.

5.6.2.1 Enumerated Types Dictionary File Example

Code Example 2: Enumerated Types Dictionary File Format Sample

! ACRONYM FID

! ------- ---

BIG_FIGURE 6207

PIPS_POS 6208

! VALUE DISPLAY MEANING

! ----- ------- -------

0 "INT" whole number

1 "1DP" 1 decimal place

2 "2DP" 2 decimal places

3 "3DP" 3 decimal places

4 "4DP" 4 decimal places

5 "5DP" 5 decimal places

6 "6DP" 6 decimal places

7 "7DP" 7 decimal places

!

! ACRONYM FID

! ------- ---

MATUR_UNIT 2378

!

! VALUE DISPLAY MEANING

! ----- ------- -------

0 " " Undefined

1 "Yr " Years

2 "Mth" Months

3 "Wk " Weeks

4 "Day" Days

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 73
EMAC380UMRDM.240

5.6.2.2 Tagged Attributes
Several tagged attributes are available at the beginning of the file. These attributes provide version information about the dictionary
contained in the file and are processed while loading from a file-based dictionary. Some of this information is conveyed along with the
domain model representation of the dictionary. Tags may be added as future dictionary versions become available.

For the enumtype.def, an example of these tags are as follows:

Code Example 3: Enumerated Types Dictionary Tagged Attribute Sample

The following table describes the tag attributes and indicates which are used when encoding the domain representation of the file.

!tag Filename ENUMTYPE.001

!tag Desc IDN Marketstream enumerated tables

!tag Type 2

!tag RT_Version 4.20.17

!tag DT_Version 15.41

!tag Date 5-Feb-2017

TAG ATTRIBUTE DESCRIPTION

Date Includes information regarding the dictionary release date.
Date is not used when encoding the domain representation of the field dictionary.

Desc A Description of the dictionary.
Desc is not used when encoding the domain representation of the field dictionary.

DT_Version The version of the display template version.
DT_Version is used when encoding the domain representation of the field dictionary. For device compatibility
purposes, this value is sent as both Version and DT_Version.

Filename The original name of the file as created by Refinitiv. This typically does not match the current name of the file,
enumtype.def.
Filename not used when encoding the domain representation of the field dictionary.

RT_Version The version of the field dictionary associated with this enumerated type dictionary.
RT_Version is used when encoding the domain representation of the field dictionary.

Type The dictionary type associated with this dictionary. For an enumerated types dictionary, this should be
DICTIONARY_ENUM_TABLES = 2. Other types are defined in Section 5.4.
Type is used when encoding the domain representation of the field dictionary.

Table 45: Enumerated Type Dictionary File Tag Information

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 74
EMAC380UMRDM.240

5.6.2.3 Reference Fields Section
The first section lists all fields that use the table. These fields should have the type Enum in their corresponding Field Dictionary and have
matching names.

5.6.2.4 Values Table Section
The second section lists the value of each enumerated type and its corresponding display data.

5.6.3 Specific Usage: RDF Direct and EnumTable Dictionary
The RDF Direct EnumTable Dictionary uses the name “RWFEnum”. It has a DictionaryId of 1 to match the RWFFld Dictionary.

RDF Direct uses the standard file representation described in Section 5.5.2. The file does not include a DictionaryId or a Version number, so
most existing enumtype.def parsers can parse the RWF FieldDictionary file without changes.

NAME REFINITIV WIRE FORMAT ELEMENT NAME

ACRONYM n/a (The name of the field is not sent with the dictionary payload).

FID FIDS

Table 46: Refinitiv Wire Format EnumType Dictionary File Format Reference Fields

NAME REFINITIV WIRE FORMAT
ELEMENT NAME NOTES

VALUE VALUE The unsigned, integer value corresponding to the enumerated value.

DISPLAY DISPLAY Quoted alphanumeric for the expanded string value.
In cases where special characters are needed, the DISPLAY column uses a
hexadecimal value, which is identified by using hash marks instead of quotation
marks, e.g. #42FE#.

MEANING MEANING The meaning column is not required over the network and typically not provided.

Table 47: Refinitiv Wire Format EnumType Dictionary File Values

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 75
EMAC380UMRDM.240

5.7 Special Semantics

5.7.1 DictionariesProvided and DictionariesUsed
The Directory’s DirectoryInfo FilterEntry (refer to Section 4.3.1.1) includes two elements related to Dictionaries: DictionariesProvided
and DictionariesUsed. Both elements contain an Array of ASCII dictionary names. These names can be used in Name to request the
dictionaries.

 To dynamically discover dictionaries while minimizing the amount of data downloaded:
1. Parse the DictionariesUsed from each desired service in the Directory.

2. Parse the DictionariesProvided from every service in the Directory.

3. Make a streaming request for any Dictionary from DictionariesProvided that is required to process or encode content.

4. For each Dictionary response, parse the summaryData in the payload to obtain the dictionary’s Type and Version.

• If a dictionary is of an unneeded type, that dictionary stream can be closed.

• If a dictionary is needed, a reissue request can be made where the Filter requests a higher verbosity (e.g.
DICTIONARY_NORMAL).

• Version information can be used to determine if the consumer needs to update its dictionary.

5.7.2 Version Information
The version of a dictionary is normally available in Summary Data in the payload of a RefreshMsg. All available verbosities are expected to
include this information. The verbosity DICTIONARY_INFO can be used to request only the version information (as the many fields in
dictionaries tend to result in large messages).

This information normally comes in the form of a ASCII containing a dotted-decimal version number, indicating first the major version,
followed by the minor version, and possibly followed by a third (informational) micro-version. For example, in the string 1.2.3:

• 1 is the major version

• 2 is the minor version

• 3 is the micro-version

5.7.2.1 Version Information Usage
Version information has a couple of uses:

• The minor version changes whenever a dictionary adds new fields, but does not modify existing fields. This means the consumer
can still use the previous dictionary with its data (though the consumer is unable to decode any new fields). Also, if the consumer
has multiple dictionaries with the same major version available, it can use the minor version information to determine which is the
latest (and therefore will be able to decode all fields regardless of the data’s source).

• The major version changes if the dictionary changes in a way that is not compatible with previous versions (such as changing an
existing field). This means that data encoded using a dictionary with one major version cannot be decoded using a dictionary with a
different major version. If a consumer learns that its provider has changed to a dictionary with a different major version, it must
retrieve the new dictionary before again decoding data.

NOTE: DictionariesUsed lists dictionaries that might be helpful or needed to encode, decode, cache, or display content from the
dictionary provider; any additional dictionaries in this list might be acquired independently.

5 Dictionary Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 76
EMAC380UMRDM.240

5.7.2.2 Handling Dictionary Version Changes
To keep consumers informed of changes, Refinitiv recommends that dictionary requests be streaming even though updates are not used for
this domain.

If the dictionary’s minor version changes, a provider may advertise it via a StatusMsg with a State of OmmState.Open/
OmmState.Suspect. The consumer may then reissue its dictionary request to obtain the latest version.

If a dictionary’s major version is changed, the provider should disconnect all consumers to ensure that the consumers’ content and dictionary
are entirely resynchronized.

5.8 Other Dictionary Types

The Dictionary domain is intended to be used for other versionable data that updates very rarely. This section briefly describes the other
reserved dictionary types.

None of these dictionary types are currently used, nor is there any domain model specification associated with any of them at this time.

5.9 Specific Usage: RDMS

Refinitiv Real-Time Distribution System currently support only a single DictionaryId’s family. If the provider doesn’t specify it then it is
interpreted to be 1.

DICTIONARY TYPE DESCRIPTION

DisplayTemplate A DisplayTemplate dictionary contains specifications that describe how and where to display
fields on a screen.

DataDefinition A DataDefinition dictionary contains specifications for ElementListDefs and FieldListDefs that
can be used for decoding FieldLists and ElementLists that have been optimized with
SetDefinitions.

StyleSheet A StyleSheet dictionary contains an XSLT or CSS style sheet.

Reference A Reference dictionary is a table of reference information provided as a Series. This information
is not used for parsing, interpreting, caching, or displaying data.

Table 48: Other Dictionary Types

6 Market Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 77
EMAC380UMRDM.240

6 Market Price Domain

6.1 Description

The Market Price domain provides access to Level I market information such as trades, indicative quotes, and top-of-book quotes. All
information is sent as a FieldList. Field-value pairs contained in the field list include information related to that item (i.e., net change, bid,
ask, volume, high, low, or last price).

6.2 Usage

6.2.1 Market Price Request Message
A Market Price request message is encoded using ReqMsg and sent by Open Message Model consumer applications. The request specifies
the name and attributes of an item in which the consumer is interested.

To receive updates, a consumer can make a “streaming” request by setting ReqMsg.InterestAfterRefresh to true. If the method is not set,
the consumer requests a “snapshot,” and the refresh ends the request (though updates might be received in either case if the refresh has
multiple parts).

To stop updates, a consumer can pause an item (if the provider supports the pause feature). For additional details, refer to the Enterprise
Message API C++ Edition Developers Guide.

NOTE: GenericMsg(s) are not supported in the MMT_MARKET_PRICE Refinitiv Domain Model.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_PRICE = 6

Interactions Required.
• InitialImage: true, indicates that an initial image is required.
• InterestAfterRefresh: true, indicates that a streaming request is required.
• Pause: true, indicates that a pause is required.

Indications Optional.
ConflatedInUpdates: true, indicates conflated updates is required
Batch and View request are specified in the Payload.

QoS Optional. Indicates the QoS at which the consumer wants the stream serviced. If both QoS and
worstQos are specified, this request can be satisfied by a range of QoS.

worstQos Optional. Used with the QoS member to define a range of acceptable QoS. When the provider encounters
such a range, it should attempt to provide the best QoS it can within that range.
worstQos should only be used on services that claim to support it via the SupportsQosRange item in
the Source Directory response (refer to Section 4.3.1.1).

NOTE: Enterprise Message API provides the Request.Qos() method to set both Qos and WorstQos
depending upon the timeliness and rate values.

Priority Optional. Indicates the class and count associated with stream priority.

extendedHeader Not used.

ServiceId Required. Specifies the ID of the service from which the consumer wishes to request the item.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

Table 49: Market Price Request Message

6 Market Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 78
EMAC380UMRDM.240

NameType Optional. When consuming from Refinitiv sources, typically set to INSTRUMENT_NAME_RIC = 1 (the
“Reuters Instrument Code”). If unspecified, NameType defaults to INSTRUMENT_NAME_RIC = 1.

Name Required. Specifies the name of the requested item.

NOTE: Not used for Batch Item request.

ServiceName Required. Specifies the name of the service from which the consumer wishes to request the item.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Optional. When features such as View or Batch are leveraged, the payload can contain information
relevant to that feature. For more detailed information, refer to the Appendix A.

COMPONENT DESCRIPTION / VALUE

Table 49: Market Price Request Message (Continued)

6 Market Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 79
EMAC380UMRDM.240

6.2.2 Market Price Refresh Message
A Market Price Refresh Message is encoded using RefreshMsg and sent by Open Message Model provider and non-interactive provider
applications. This message sends all currently available information about the item to the consumer.

FieldList in the payload should include all fields that may be present in subsequent updates, even if those fields are currently blank.
When responding to a View request, this refresh should contain all fields that were requested by the specified view. If for any reason the
provider wishes to send new fields, it must first send an unsolicited refresh with both the new and currently-present fields.

NOTE: All solicited or unsolicited refresh messages in the Market Price domain must be atomic. The Market Price domain does not allow for
multi-part refresh use. The provider should only send the Name and ServiceName in the first Refresh response message. However if
MsgKeyInUpdates is set to true in the Enterprise Message API configuration, then the Name and ServiceName must be provided for every
Refresh response messages.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_PRICE = 6

State Required. Includes the state of the stream and data.

Solicited Required. Indicates whether the refresh was solicited. Possible settings are:
• true: The refresh was solicited.
• false: The refresh was unsolicited.

Indications Required. Available settings include:
• Complete: true, Indicates that the refresh is complete.
• DoNotCache: true, Indicates that the refresh message should not be cached.
• ClearCache: true, Indicates to clear the cache.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for sequencing
messages within this stream.

ItemGroup Optional. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies the permission information associated with content on this stream.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service from which the consumer wishes to request the item.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

ServiceId Required. Specifies the ID of the service that provides the item.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Optional. NameType should match the NameType specified in the request. If unspecified, NameType defaults to
INSTRUMENT_NAME_RIC = 1.

Name Required. This should match the requested name.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. This should consist of a FieldList containing all fields associated with the item.

Table 50: Market Price Refresh Message

6 Market Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 80
EMAC380UMRDM.240

6.2.3 Market Price Update Message
A Market Price Update Message is encoded using UpdateMsg and sent by Open Message Model provider and non-interactive provider
applications. The Market Price Update Message conveys any changes to an item’s data.

NOTE: The provider should only send the Name and NameType in the first Refresh response message. However if MsgKeyInUpdates is set
to true, then the Name and NameType must be provided for every Update response message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_PRICE = 6

UpdateTypeNum Required. Indicates the general content of the update:
• INSTRUMENT_UPDATE_UNSPECIFIED = 0
• INSTRUMENT_UPDATE_QUOTE = 1
• INSTRUMENT_UPDATE_TRADE = 2
• INSTRUMENT_UPDATE_NEWS_ALERT = 3
• INSTRUMENT_UPDATE_VOLUME_ALERT = 4
• INSTRUMENT_UPDATE_ORDER_INDICATION = 5
• INSTRUMENT_UPDATE_CLOSING_RUN = 6
• INSTRUMENT_UPDATE_CORRECTION = 7
• INSTRUMENT_UPDATE_MARKET_DIGEST = 8
• INSTRUMENT_UPDATE_QUOTES_TRADE = 9
• INSTRUMENT_UPDATE_MULTIPLE = 10
• INSTRUMENT_UPDATE_VERIFY = 11

Indications Conditional.
• If UpdateTypeNum is set to be INSTRUMENT_UPDATE_CORRECTION=7 or UPDVERIFY,

DoNotRipple must be set to true.
• DoNotCache: true, Indicates the application should not cache this update message.
• DoNotConflate: true, Indicates the application should not conflate updates.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for
sequencing messages within this stream.

ConflatedCount Optional. If a provider sends a conflated update, ConflatedCount specifies the number of updates in
the conflation.
The consumer indicates interest in this information by setting the ReqMsg.ConflatedInUpdates to true
in the request.

ConflatedTime Optional. If a provider sends a conflated update, ConflatedTime specifies the time interval (in
milliseconds) over which data is conflated.
The consumer indicates interest in this information by setting the ReqMsg.ConflatedInUpdates to true
in the request.

ItemGroup Optional. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies permissioning information associated with only the contents of this update.

extendedHeader Not used.

Table 51: Market Price Update Message

6 Market Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 81
EMAC380UMRDM.240

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true on the request. Specifies the
ID of the service that provides the data.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true on the request. NameType
should match the name type specified on the request. If NameType is unspecified, its value defaults to
INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true on the request. Name specifies the
name of the item being provided.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true on the request. Specifies
the name of the service that provides the data.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. This should consist of a FieldList with any changed data.

COMPONENT DESCRIPTION / VALUE

Table 51: Market Price Update Message (Continued)

6 Market Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 82
EMAC380UMRDM.240

6.2.4 Market Price Status Message
A Market Price Status Message is encoded using StatusMsg and sent by Open Message Model provider and non-interactive provider
applications. The status message conveys state change information associated with an item stream.

6.2.5 Market Price Post Message
If support is specified by the provider, consumer applications can post Market Price data. For more information on posting, refer to the
Enterprise Message API C++ Edition Developers Guide.

NOTE: The provider should only send the Name and NameType in the first Refresh response message. However if MsgKeyInUpdates is set
to true, then the Name and NameType must be provided for every Status response message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_PRICE = 6

State Optional. Specifies the current state information associated with the data and stream.

ItemGroup Optional. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies permissioning information associated with only the contents of this message.

extendedHeader Not used.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true on the request. Specifies the
ID of the service that provides the data.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true on the request. NameType
should match the name type specified on the request. If NameType is unspecified, its value defaults to
INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true on the request. Name specifies the
name of the item being provided.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true on the request. Specifies
the name of the service that provides the data.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Not used.

Table 52: Market Price Status Message

6 Market Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 83
EMAC380UMRDM.240

6.3 Data: Response Message Payload

Market Price data is conveyed as an FieldList, where each FieldEntry corresponds to a piece of information and its current value. The
field list should be decoded by checking FieldEntry.LoadType and retrieving a specific type. For more information, refer to the
Enterprise Message API C++ Edition Developers Guide.

Figure 15. MarketPrice Response Message Payload

6 Market Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 84
EMAC380UMRDM.240

6.4 Special Semantics

6.4.1 Snapshots
MarketPrice is one of a few message model types that support a true snapshot. If a non-streaming request is made, then the UpdateMsg will
not be sent. Status messages could be received before the single Refresh response message (for details refer to Section 2.3) is received.
For streaming and snapshot streams, the Refresh response message will always be a single message and it will have
RefreshMsg.Complete is set to true.

6.4.2 Ripple Fields
Some fields in a FieldList are defined as ripple fields. When the value of a ripple field changes, the former value automatically becomes
the new value of another field. The change to the second field may, in turn, cause another field to be changed to reflect the second field’s
former value. Whether or not fields are rippled is determined by the value of DoNotRipple.

When a refresh message is received, all of the ripple fields delivered by the Venue/Exchange are present in the refresh message. However,
the consuming application must set ripple behavior for fields not in the refresh message. In some cases, the values delivered for the “ripple-
to” Fields in the refresh may be empty, but they must be present.

It is a responsibility of the Consumer application to ripple the Fields. The Enterprise Message API does NOT ripple fields on behalf of the
consumer application. The Open Message Model FieldList concept supports rippling. However, the FieldList class does not cache, so
it cannot ripple fields.

6.5 Specific Usage: RDF Direct MarketPrice

RDF Direct uses MarketPrice for SIAC Level 1, NASDAQ Level 1, and OPRA Level 1 data. The Refresh is provided in a single message. It
contains all of the fields, even if they are blank.

6.6 Specific Usage: Legacy Records

MarketPrice can also be used for data structured like IDN records, such as:

• Page Records for reference page records and TS1 historical data.

• Chains for indices and ranked lists.

• Segment Chains for time & sales and news stories.

7 Market By Order Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 85
EMAC380UMRDM.240

7 Market By Order Domain

7.1 Description

The Market By Order domain provides access to Level II full order books. The list of orders is sent in the form of a Map. Each MapEntry
represents one order (using the order’s Id as its key) and contains a FieldList describing information related to that order (such as price,
whether it is a bid/ask order, size, quote time, and market maker identifier).

7.2 Usage

7.2.1 Market By Order Request Message
A Market By Order request message is encoded using ReqMsg and sent by Open Message Model consumer applications. The request
specifies the name of the item in which a consumer is interested.

To receive updates, the consumer makes a “streaming” request by setting the ReqMsg.InterestAfterRefresh to true. If the method is not
set, the consumer is requesting a “snapshot,” and the refresh should end the request. Updates may be received in either case if the refresh
has multiple parts.

To stop updates, a consumer can pause an item if the provider supports this functionality. For additional details, refer to the Enterprise
Message API C++ Edition Developers Guide.

NOTE: GenericMsg(s) are not supported for MMT_MARKET_BY_ORDER Refinitiv Domain Models.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_BY_ORDER = 7

Interactions Required.
• InitialImage: true, Indicates that an initial image is required.
• InterestAfterRefresh: true, Indicates that a streaming request is required.
• Pause: true, Indicates that a pause is required.

Indications Optional.
ConflatedInUpdates: true, indicates conflated updates is required.

QoS Optional. Indicates the QoS at which the consumer wants the stream serviced. If both QoS and
WorstQos are specified, this request can be satisfied by a range of qualities of service.

worstQos Optional. Used with the QoS member to define a range of acceptable Qualities of Service. When
encountering such a range, the provider should attempt to provide the best QoS it can within that range.
This should only be used on services that claim to support it via the SupportsQosRange item in the
Source Directory response (refer to Section 4.3.1.1).

NOTE: Enterprise Message API provides the Request.Qos() method to set both Qos and WorstQos
depending upon the timeliness and rate values.

Priority Optional. Indicates the class and count associated with stream priority.

extendedHeader Not used.

ServiceId Required. This should be the ID associated with the service from which the consumer wants to request
the item.

NOTE: A consumer should set either the ServiceName or ServiceId of the service, but not both.

Table 53: Market By Order Request Message

7 Market By Order Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 86
EMAC380UMRDM.240

ServiceName Required. This should be the name of the service from which the consumer wishes to request data.

NOTE: A consumer should set either the ServiceName or ServiceId of the service, but not both.

NameType Optional. When consuming from Refinitiv sources, NameType is typically set to
INSTRUMENT_NAME_RIC = 1 (the “Reuters Instrument Code”). If absent, the Enterprise Message API
assumes a setting of INSTRUMENT_NAME_RIC = 1.

Name Required. Specifies the requested item’s name.

NOTE: Not used for Batch Item requests.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Optional. When features such as View or Batch are leveraged, the payload can contain information
relevant to that feature. For more detailed information, refer to Appendix A.

COMPONENT DESCRIPTION / VALUE

Table 53: Market By Order Request Message (Continued)

7 Market By Order Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 87
EMAC380UMRDM.240

7.2.2 Market By Order Refresh Message
A Market By Order refresh message is encoded using RefreshMsg and sent by Open Message Model interactive provider and non-
interactive provider applications. A Market By Order refresh may be sent in multiple parts. It is possible for update and status messages to be
delivered between parts of a refresh message, regardless of whether the request is streaming or non-streaming.

NOTE: The provider should send the Name and ServiceName only in the first Refresh response message. However if MsgKeyInUpdates is
set to true in the Enterprise Message API configuration, then the Name and ServiceName must be provided for every Refresh response
message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_BY_ORDER = 7

State Required. The state of the stream and data.

Solicited Required. Indicated whether the refresh was solicited. Available values are:
• true: The refresh was solicited.
• false: The refresh was unsolicited.

Indications Optional.
• DoNotCache: true, indicate do not cache this refresh message
• ClearCache: true, indicate clear cache
• Complete: true, indicate refresh complete

PartNum Optional. Specifies the part number of a multi-part refresh.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for
sequencing messages within this stream.

ItemGroup Optional. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies permission information associated with content on this stream.

extendedHeader Not used.

ServiceId Required. Specifies the ID of the service that provides the item.

NOTE: The provider should set either the ServiceName or ServiceId of the service, but not both.

NameType Optional. NameType should match the NameType specified in the request. If absent, NameType is
assumed to be INSTRUMENT_NAME_RIC = 1.

Name Required. Name should match the requested item’s name.

ServiceName Required. Specifies the name of the service that provides the item.

NOTE: The provider should set either the ServiceName or ServiceId of the service, but not both.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. An order book is represented by a Map, where each entry (MapEntry) contains information
(FieldList) that corresponds to an order.

Table 54: Market By Order Refresh Message

7 Market By Order Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 88
EMAC380UMRDM.240

7.2.3 Market By Order Update Message
A Market By Order update message is encoded using UpdateMsg and sent by Open Message Model interactive provider and non-
interactive provider applications. The provider can send an update message to add, update, or remove order information. Updates may be
received between the first Refresh and the RefreshComplete. It is the consuming application’s responsibility to determine if the update is
applicable to the data that has previously been sent in a refresh.

NOTE: The provider should only send the Name and ServiceName in the first Refresh response message. However if MsgKeyInUpdates is
set to true, then the Name and ServiceName must be provided for every Update response messages.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_BY_ORDER = 7

UpdateTypeNum Required. Indicates the general content of the update. Typically sent as one of the following:
• INSTRUMENT_UPDATE_UNSPECIFIED = 0
• INSTRUMENT_UPDATE_QUOTE = 1

Indications Optional:
• DoNotCache: true, Indicates that the application should not cache this update message.
• DoNotConflate: true, Indicates that the application should not conflate this update message.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for
sequencing messages within this stream.

ConflatedCount Optional. If a provider sends a conflated update, ConflatedCount informs the consumer as to how
many updates were included in the conflation.
The consumer indicates interest in this information by setting the ReqMsg.ConflatedInUpdates to true
in the request.

ConflatedTime Optional. If a provider sends a conflated update, ConflatedTime informs the consumer as to the
interval (in milliseconds) over which data was conflated.
The consumer indicates interest in this information by setting the ReqMsg.ConflatedInUpdates to true
in the request.

PermissionData Optional. PermissionData contains permissioning information associated only with the contents of this
update.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true. ServiceName specifies
the name of the service that provides the data.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true. ServiceId specifies the ID
of the service that provides the data.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true. NameType must match the
name type in the item’s request message (typically INSTRUMENT_NAME_RIC = 1).

Name Optional (Required if MsgKeyInUpdates was set to true). Name specifies the name of the item being
provided.

Filter Not used.

Identifier Not used.

Table 55: Market By Order Update Message

7 Market By Order Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 89
EMAC380UMRDM.240

Attrib Not used.

Payload Required. The order book is represented by a Map, where each map entry (MapEntry) holds information
(FieldList) corresponding to an order.

COMPONENT DESCRIPTION / VALUE

Table 55: Market By Order Update Message (Continued)

7 Market By Order Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 90
EMAC380UMRDM.240

7.2.4 Market By Order Status Message
A Market By Order status message is encoded using StatusMsg and sent by Open Message Model interactive provider and non-interactive
provider applications. This message conveys state change information associated with an item stream.

7.2.5 Market By Order Post Message
If support is specified by the provider, consumer applications can post Market By Order data. For more information on posting, refer to the
Enterprise Message API C++ Edition Developers Guide.

NOTE: The provider should only send the Name and ServiceName in the first Refresh response message. However MsgKeyInUpdates is
set to true, then the Name and ServiceName must be provided for every Status response messages.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_BY_ORDER = 7

State Optional. Specifies the current state information associated with the data and stream.

Indications Optional:
ClearCache: true, Indicates to clear the cache.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for
sequencing messages within this stream.

ItemGroup Optional. The provider may use this to change the item’s ItemGroup (for details, refer to Section
4.3.1.3).

PermissionData Optional. PermissionData specifies any new permissioning information associated with all of the
stream’s contents.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true). Specifies the name of the
service providing data.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true. ServiceId specifies the ID
of the service that provides the item.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true. NameType must match the
name type in the item’s request message. If not specified, NameType defaults to
INSTRUMENT_NAME_RIC = 1.

Name Optional (Required if MsgKeyInUpdates was set to true). Name specifies the name of the item being
provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Not used.

Table 56: Market By Order Status Message

7 Market By Order Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 91
EMAC380UMRDM.240

7.3 Data

7.3.1 Response Message Payload
The payload is a Map. Refreshes for this Map may be in multiple response messages. The bandwidth of the refresh messages can be
optimized by putting multiple MapEntry in each response messages. For optimal performance the packed map entries in each response
message should use less than 6000 bytes. If the data is split into multiple response messages, then a Map.TotalCountHint should be
provided to optimize downstream caching. Because the fields in each MapEntry are the same, bandwidth can be further optimized by
DataDefinitions.

Figure 16. MarketByOrder Response Message Payload

7 Market By Order Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 92
EMAC380UMRDM.240

7.3.2 Summary Data
The Map.SummaryData only needs to be present for the first refresh part. Typical fields in the Map.SummaryData include:

• Permission information (PROD_PERM)

• Currency of the orders (CURRENCY)

• Trade Units for the precision at which order prices are set (TRD_UNITS)

• Market State (MKT_ST_IND)

• Identifier of the exchange on which the orders were placed (RDN_EXCHD2)

• Price Ranking Rules (PR_RNK_RUL)

• Order Ranking Rules (OR_RNK_RUL)

• Quote Date (QUOTE_DATE)

• RIC of the underlying equity (STOCK_RIC)

7.3.3 MapEntry Contents
The MapEntry.Key is a Buffer, Ascii, or Rmtes that contains the Order ID. The MapEntry.KeyFieldId may be set to ORDER_ID, so the
information does not have to be repeated in the MapEntry.Value.

The MapEntry.Value is a FieldList that typically contains the following information about the order:

• Order Price and Side (BID, ASK, or ORDER_PRC and ORDER_SIDE)

• Order Size (BIDSIZE, ASKSIZE, or ORDER_SIZE)

• Price Qualifiers (PRC_QL_CD, PRC_QL2)

• Market Maker Identifier (MKT_MKR_ID or MMID)

• Quote Time (QUOTIM_MS)

7.4 Special Semantics

None.

7.5 Specific Usage: RDF Direct and Response Message Payload

RDF Direct uses MarketByOrder for several markets, including NASDAQ TotalView, Archipelago ECN order book, and Instinet ECN order
book.

The payload is a Map. Each Refresh for this Map includes summary data and a single MapEntry. Updates are not sent for any map entry
until after the message is sent with RefreshMsg.Complete set to true. Since each resposne message includes only one map entry,
DataDefinitions are not used to reduce bandwidth. The Map.TotalCountHint is not provided.

The Map.SummaryData is sent in every Refresh, even if it does not change. The fields used are from the RWFFld Field Dictionary:

• PROD_PERM (1): Integer for permission information.

• CURRENCY (15): Enumeration of currency for the orders.

• TRD_UNITS (53): Enumeration of trade units for the precision for which order prices are set.

• MKT_ST_IND (133): Enumeration of market state.

• RDN_EXCHD2 (1709): Enumeration of exchange on which the orders were placed.

• PR_RNK_RUL (3423): Enumeration of price ranking rules.

• OR_RNK_RUL (3425): Enumeration of order ranking rules.

7 Market By Order Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 93
EMAC380UMRDM.240

• STOCK_RIC (1026): RIC of the underlying equity.

The MapEntry.Key is a buffer that contains the Order ID. The Map.KeyFieldId is not set, but this may be changed in the future.

The MapEntry.Data is a field list that contains some or all of the following information about the order:

• ORDER_PRC (3427) & ORDER_SIDE (3428): Real and Enumeration for the order price & side (buy or sell/bid or ask).

• ORDER_SIZE (3429): Real for the order size.

• ORDER_ID (3426): Same value as the MapEntry.KeyData. This may be removed in the future by setting the Map.KeyFieldId to
ORDER_ID (3426).

• QUOTIM_MS (3855): Quote Time in millisecond since GMT of the current day in the GMT time zone.

The FieldList.DictId is 0, so it should be ignored.

7.6 Specific Usage: RDMS

For the most part, MarketByOrder data from Refinitiv Real-Time Distribution System is the same as it is from the original source of the data
(e.g., Refinitiv Data Feed Direct). However, if caching is enabled in an Refinitiv Real-Time Distribution System component, there are two
differences.

• The number of messages packed into each Refresh response message may be different.

• An updated response message might be delivered between Refresh response messages and before the message with
RefreshMsg.Complete set true. It is the consumer applications responsibility to apply the indicated changes.

8 Market By Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 94
EMAC380UMRDM.240

8 Market By Price Domain

8.1 Description

Market By Price provides access to Level II market depth information. The list of price points is sent in a Map. Each entry represents one
price point (using that price and bid/ask side as its key) and contains a FieldList that describes information related to that price point.

8.2 Usage

8.2.1 Market By Price Request Message
A Market By Price request message is encoded using ReqMsg and sent by Open Message Model consumer applications. The request
specifies the name of an item in which the consumer is interested.

To receive updates, a consumer can make a “streaming” request by setting ReqMsg.InterestAfterRefresh to true. If the flag is not set, the
consumer requests a “snapshot” and the refresh should end the request (updates may be received in either case if the refresh has multiple
parts).

A consumer can pause an item to stop updates (if the provider supports such functionality). For more information, refer to the Enterprise
Message API C++ Edition Developers Guide.

NOTE: GenericMsg(s) are not supported for the MMT_MARKET_BY_PRICE Refinitiv Domain Model.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_BY_PRICE = 8

Interactions Conditional.
• InitialImage: true, indicates that an initial image is required.
• InterestAfterRefresh: true, indicates that a streaming request is required.
• Pause: true, indicates that a pause is required.

Indications Optional.
ConflatedInUpdates: true, indicates that conflated updates are required.
Batch and View requests are specified in the Payload.

QoS Optional. Indicates the QoS at which the consumer wants the stream serviced. If both QoS and
worstQos are specified, this request can be satisfied by a range of QoS.

worstQos Optional. Used with QoS to define a range of acceptable QoS. When the provider encounters such a
range, it should attempt to provide the best QoS possible within that range.
This should only be used on services that claim to support it via the SupportsQosRange item in the
Source Directory response (for further details, refer to Section 4.3.1.1).

NOTE: Enterprise Message API provides the Request.Qos() method to set both Qos and WorstQos
depending upon the timeliness and rate values.

Priority Optional. Indicates the class and count associated with stream priority.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service from which the consumer wishes to request data.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

Table 57: Market By Price Request Message

8 Market By Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 95
EMAC380UMRDM.240

8.2.2 Market By Price Refresh Message
A Market By Price refresh message is encoded using RefreshMsg and sent by Open Message Model interactive provider and non-
interactive provider applications.

A Market By Price refresh may be sent in multiple parts. Both update and status messages can be delivered between parts of a refresh
message, regardless of streaming or non-streaming request.

ServiceId Required. Specifies the ID of the service that provides the requested item.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Optional. Typically set to INSTRUMENT_NAME_RIC = 1 (the “Reuters Instrument Code”) when
consuming from Refinitiv sources. If absent, its default value is INSTRUMENT_NAME_RIC = 1.

Name Required. Specifies the name of the requested item.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Optional. When features such as View or Batch are leveraged, the payload can contain information
relevant to that feature.
For further details, refer to the Appendix A.

NOTE: The provider should send Name and ServiceName only in the first Refresh response message, unless MsgKeyInUpdates is set to
true in the Enterprise Message API configuration. In this case Name and ServiceName must be provided in each Refresh response
message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_BY_PRICE = 8

State Required. Indicates the state of the stream and data.

Solicited Required. Indicates whether the refresh message was solicited.
• true: The refresh message is solicited.
• false: The refresh message is unsolicited.

Indications Conditional.
• DoNotCache: true, indicates that the application should not cache this refresh message.
• ClearCache: true, indicates that the application should clear its cache.
• Complete: true, indicates that this is the last message in the refresh complete.

PartNum Optional. Specifies the part number of a multi-part refresh.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for
sequencing messages within this stream.

ItemGroup Optional. Associates the item with an Item Group (for further information, refer to Section 4.3.1.3).

Table 58: Market By Price Refresh Message

COMPONENT DESCRIPTION / VALUE

Table 57: Market By Price Request Message (Continued)

8 Market By Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 96
EMAC380UMRDM.240

PermissionData Optional. If present, specifies permission information associated with the stream’s content.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service that provides the item.

NOTE: The consumer application should set either the ServiceName or ServiceId of the service, but
not both.

ServiceId Required. Specifies the ID of the service that provides the item.

NOTE: The consumer application should set either the ServiceName or ServiceId of the service, but
not both.

NameType Optional. NameType should match the NameType specified in the request. If absent, this value is
assumed to be INSTRUMENT_NAME_RIC = 1.

Name Required. Name should match the name specified in the request.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. The order book is represented by a Map, where each entry (MapEntry) contains a
FieldList which has information about a price point.

COMPONENT DESCRIPTION / VALUE

Table 58: Market By Price Refresh Message (Continued)

8 Market By Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 97
EMAC380UMRDM.240

8.2.3 Market By Price Update Message
A Market By Price update message is encoded using UpdateMsg and sent by Open Message Model interactive provider and non-interactive
provider applications. The provider can send an update message to add, update, or remove price point information. Updates will not be
received before images. True snapshots are supported.

NOTE: The provider should send Name and ServiceName only in the first Refresh response message. However if MsgKeyInUpdates is set
to true, then Name and ServiceName must be provided for every Update response message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_BY_PRICE = 8

UpdateTypeNum Required. Indicates the general content of the update. Typically sent as one of the following:
• INSTRUMENT_UPDATE_UNSPECIFIED = 0
• INSTRUMENT_UPDATE_QUOTE = 1

Indications Optional.
• DoNotCache: true, indicates to not cache the update message.
• DoNotConflate: true, indicates to not conflate the update message.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for
sequencing messages within this stream.

ConflatedCount Optional. If a provider sends a conflated update, ConflatedCount specifies how many updates were
included in the conflation.
The consumer indicates interest in this information by setting the ReqMsg.ConflatedInUpdates flag in
the request.

ConflatedTime Optional. If a provider sends a conflated update, ConflatedTime specifies the time interval (in
milliseconds) over which data is conflated.
The consumer indicates interest in this information by setting the ReqMsg.ConflatedInUpdates flag in
the request.

PermissionData Optional. Specifies permissioning information for the update’s content.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true on the request. Specifies
the name of the service that provides the data.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true on the request. Specifies the
ID of the service that provides the item.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true on the request. NameType
should match the NameType specified in the item’s request message. If NameType is not specified, it
uses the default INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true on the request) Specifies the name
of the item being provided.

Filter Not used.

Table 59: Market By Price Update Message

8 Market By Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 98
EMAC380UMRDM.240

8.2.4 Market By Price Status Message
A Market By Price status message is encoded using StatusMsg and sent by Open Message Model interactive provider and non-interactive
provider applications. This message conveys state change information associated with an item stream.

Identifier Not used.

Attrib Not used.

Payload Required. MarketByPrice is represented by a Map, where each entry contains a FieldList containing
information about a price point.

NOTE: The provider should send Name and ServiceName only in the first Refresh response message, unless MsgKeyInUpdates is set to
true, in which case Name and ServiceName must be provided for every Status response message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_BY_PRICE = 8

State Optional. Specifies current state information associated with the data and stream.

Indications Optional.
ClearCache: true, Indicates to clear the cache.

QoS Optional. Specifies the QoS at which the stream is provided.

ItemGroup Optional. Specifies the item’s ItemGroup (the provider can use this component to change the item’s
ItemGroup).

PermissionData Optional. Specifies new permissioning information associated with all contents on the stream.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true on the request. Specifies
the name of the service that provides the data.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true on the request. Specifies the
ID of the service that provides the item.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true on the request. NameType
should match the NameType specified in the item’s request message. If NameType is not specified, it
uses the default INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true on the request. Specifies the name
of the item being provided.

Filter Not used.

Identifier Not used.

Table 60: Market By Price Status Message

COMPONENT DESCRIPTION / VALUE

Table 59: Market By Price Update Message (Continued)

8 Market By Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 99
EMAC380UMRDM.240

8.2.5 Market By Price Post Message
If supported by the provider, consumer applications can post Market By Price data. For more information on posting, refer to the Enterprise
Message API C++ Edition Developers Guide.

Attrib Not used.

Payload Not used.

COMPONENT DESCRIPTION / VALUE

Table 60: Market By Price Status Message (Continued)

8 Market By Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 100
EMAC380UMRDM.240

8.3 Data

8.3.1 Response Message Payload
The payload is a Map. Refreshes for this Map may be in multiple Response messages. The bandwidth of the refresh messages can be
optimized by putting multiple MapEntry in each response message. For optimal performance the packed map entries in each response
message should use less than 6000 bytes. If the data is split into multiple messages, then a Map.TotalCountHint should be provided to
optimize downstream caching. Since the fields in each map entry are the same, bandwidth can be further optimized by DataDefinitions.

Figure 17. MarketByPrice Response Message Payload

8.3.2 Summary Data
The Map.SummaryData needs to be present only for the first refresh part, which typically includes:

• Permission information (PROD_PERM)

• Currency of the orders (CURRENCY)

• Trade Units for the precision with which order prices are set (TRD_UNITS)

• Market State (MKT_ST_IND)

• The identifier of the exchange on which the orders were placed (RDN_EXCHD2)

• Price Ranking Rules (PR_RNK_RUL)

• Quote Date (QUOTE_DATE)

8 Market By Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 101
EMAC380UMRDM.240

8.3.3 MapEntry.Key Contents
The MapEntry.Key’s data is a Buffer that contains a combination of the price and order side, thus each key is unique within its map. The
MapEntry.Key’s data should be treated as a single entity and is not meant to be parsed.

MapEntry.Data is a FieldList that contains some or all of the following information about the price point:

• Order Price & Side (BID, ASK, or ORDER_PRC and ORDER_SIDE)

• Order Size (BIDSIZE, ASKSIZE, or ORDER_SIZE)

• Number of aggregated orders (NO_ORD)

• Quote Time (QUOTIM_MS)

• A map containing the Market Makers (MMID) and optionally a field list with each of the market makers’ positions at the Order Price
point.

8.4 Special Semantics

None.

8 Market By Price Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 102
EMAC380UMRDM.240

8.5 Specific Usage: RDF Direct and the Response Message Payload

RDF Direct uses MARKET_BY_PRICE for several markets, including NYSE OpenBook, Archipelago ECN market depth, and Instinet ECN
market depth.

The payload is a Map. Each refresh message for this Map includes SummaryData and up to 50 map entries. Updates are not sent for any
map entry until after the RefreshMsg.Complete is set to true. DataDefinitions are not used to reduce bandwidth. Map.TotalCountHint
is not provided.

Map.SummaryData is sent in every refresh message, even if it does not change. The fields used are from the RWFFld Field Dictionary:

• PROD_PERM (1): Integer for permission information

• CURRENCY (15): Enumeration of currency for the orders

• TRD_UNITS (53): Enumeration of trade Units for the precision for which order prices are set

• MKT_ST_IND (133): Enumeration of market state

• RDN_EXCHD2 (1709): Enumeration of exchange on which the orders were placed

The MapEntry.Key’s data is a Buffer that contains the combination of price and order side (B for buy or S for Sell), so each key is unique
within its map. The MapEntry.Key’’s data should be treated as a single entity and is not meant to be parsed.

The MapEntry.Value is a FieldList that contains the following information about the price point:

• NO_ORD (3430): Integer for the Number of Orders aggregated into this MapEntry

• ORDER_PRC (3427) & ORDER_SIDE (3428): Real and Enumeration for the order price & side (buy or sell/bid or ask)

• ORDER_SIZE (3429): Real for the aggregated size of the order at this price

• QUOTIM_MS (3855): Quote Time in millisecond since GMT of the current day in the GMT time zone

• Some venues may provide an extra field that contains a map. The MapEntry.KeyData will have a KeyFieldId which is MMID
(3435). If the positions of each market maker are available, then the MapEntry.Value will contain a FieldList. The field list will contain
a single field with the position of that market maker. If positions for each market maker are not available, MapEntry.Value’s data type
will be NoData.

The FieldList.DictId is 0, so it should be ignored.

8.6 Specific Usage: RDMS

For the most part, MarketByPrice data from Refinitiv Real-Time Distribution System is the same as it is from the original source of the data
(e.g. RDF Direct). However, if caching is enabled in an Refinitiv Real-Time Distribution System component, there are two differences.

• The number of messages packed into each Refresh response message may be different.

• Updated response messages may be delivered between Refresh response messages, before the RespMsg.Complete is set to true. It
is the consumer applications responsibility to apply the indicated changes.

9 Market Maker Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 103
EMAC380UMRDM.240

9 Market Maker Domain

9.1 Description

The Market Maker domain provides access to market maker quotes and trade information. The list of market makers is sent in the form of a
Map. Each MapEntry represents one market maker (using that market maker’s ID as its key) and contains a FieldList describing
information such as that market maker’s bid and ask prices, quote time, and market source.

9.2 Usage

9.2.1 Market Maker Request Message
A Market Maker request message is encoded using ReqMsg and sent by Open Message Model consumer applications. The request
specifies the name of an item in which the consumer is interested.

To receive updates, a consumer can make a “streaming” request by setting the ReqMsg.InterestAfterRefresh to true. If the flag is not set,
the consumer requests a “snapshot,” and the final part of the refresh indicates all responses have been received for the snapshot. Updates
may be received in either case if the refresh has multiple parts.

To stop updates, a consumer can pause an item (if the provider supports this functionality). For more information, refer to the Enterprise
Message API C++ Edition Developers Guide.

NOTE: GenericMsg(s) are not supported for the MMT_MARKET_MAKER Refinitiv Domain Model.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_MAKER = 9

Interactions Conditional. Use the appropriate interactions according to your messaging needs:
• InitialImage: true, indicates that an initial image is required.
• InterestAfterRefresh: true, indicates that a streaming request is required.
• Pause: true, indicates that a pause is required.

Indications Optional.
ConflatedInUpdates: true, indicates that conflated updates are required.
Batch and View request are specified in the Payload.

QoS Optional. Indicates the QoS at which the consumer wants the stream serviced. If both QoS and
worstQos are specified, this request can be satisfied by a range of QoS.

worstQos Optional. Used with QoS to define a range of acceptable QoS. If the provider encounters such a range, it
should attempt to provide the best possible QoS within that range.
This should only be used on services that claim to support it via the SupportsQosRange item in the
Source Directory response (for details, refer to Section 4.3.1.1).

NOTE: Enterprise Message API provides the Request.Qos() method to set both Qos and WorstQos
depending upon the timeliness and rate values.

Priority Optional. Indicates the class and count associated with stream priority.

extendedHeader Not used.

Table 61: Market Maker Request Message

9 Market Maker Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 104
EMAC380UMRDM.240

ServiceName Required. Specifies the name of the service from which the consumer wishes to request the item.

NOTE: The consumer application should set either the ServiceName or ServiceId of the service, but
not both.

ServiceId Required. Specifies the ID of the service that provides the requested item.

NOTE: The consumer application should set either the ServiceName or ServiceId of the service, but
not both.

NameType Optional. When consuming from Refinitiv sources, NameType is typically set to
INSTRUMENT_NAME_RIC = 1 (the “Reuters Instrument Code”). If absent, its value reverts to the
default, which is INSTRUMENT_NAME_RIC = 1.

Name Required. Specifies the name of the requested item.

NOTE: Not used for Batch Item request.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Optional. When features such as View or Batch are leveraged, the payload can contain information
relevant to that feature. For more details, refer to Appendix A.

COMPONENT DESCRIPTION / VALUE

Table 61: Market Maker Request Message (Continued)

9 Market Maker Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 105
EMAC380UMRDM.240

9.2.2 Market Maker Refresh Message
A Market Maker refresh message is encoded using RefreshMsg and sent by Open Message Model interactive provider and non-interactive
provider applications.

The Market Maker refresh can be sent in multiple parts. Keep in mind that both update and status messages can be delivered between parts
of a refresh message, regardless of streaming or non-streaming request.

NOTE: The provider should send the Name and ServiceName only in the first Refresh response message. However if MsgKeyInUpdates is
set to true in the Enterprise Message API configuration, then the Name and ServiceName must be provided for every Refresh response
message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_MAKER = 9

State Required. Indicates the state of the stream and data.

Solicited Required. Indicates whether the refresh was solicited. Available values are:
• true: The message was solicited.
• false: The message was unsolicited.

Indications Conditional.
• DoNotCache: true, indicates that the application should not cache.
• ClearCache: true, indicates that the application should clear the cache.
• Complete: true, indicates that the message is the final one in the refresh.

PartNum Optional. Specifies the part number of a multi-part refresh.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for
sequencing messages within this stream.

ItemGroup Required. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies permission information associated with this stream’s content.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service that provides the item.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

ServiceId Required. Specifies the ID of the service that provides the item.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

NameType Optional. NameType should match the NameType specified in the request. If absent, NameType defaults
to INSTRUMENT_NAME_RIC = 1.

Name Required. A symbol for the Market Maker item.

Filter Not used.

Identifier Not used.

Payload Required. A Market Maker is represented by a Map, where each entry (MapEntry) contains a
FieldList which has information about a market maker.

Table 62: Market Maker Refresh Message

9 Market Maker Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 106
EMAC380UMRDM.240

9.2.3 Market Maker Update Message
A Market Maker update message is encoded using UpdateMsg and sent by Open Message Model interactive provider and non-interactive
provider applications. Updates will not be received before images, and a true snapshot is supported.

The provider can send an update message to add, update, or remove market maker information.

NOTE: The provider should send the Name and ServiceName only in the first Refresh response message. However if MsgKeyInUpdates is
set to true, then the Name and ServiceName must be provided for every Update response message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_MAKER = 9

UpdateTypeNum Required. Indicates the general content of the update. Typically sent as one of the following:
• INSTRUMENT_UPDATE_UNSPECIFIED = 0
• INSTRUMENT_UPDATE_QUOTE = 1

Indications Optional:
• DoNotCache: true, specifies that the update message should not be cached.
• DoNotConflate: true, specifies that the update message should not be conflated.

PartNum Not used.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for
sequencing messages within this stream.

ConflatedCount Optional. If a provider sends a conflated update, ConflatedCount specifies how many updates are in
the conflation.
The consumer indicates interest in this information by setting ReqMsg.ConflatedInUpdates to true in the
request.

ConflatedTime Optional. If a provider sends a conflated update, ConflatedTime specifies the time interval (in
milliseconds) over which data is conflated.
The consumer indicates interest in this information by setting ReqMsg.ConflatedInUpdates to true in the
request.

PermissionData Optional. Specifies permissioning information associated only with the contents of this update.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true. ServiceName specifies
the name of the service that provides the data.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true. ServiceId specifies the ID
of the service that provides the item.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true. NameType must match the
name type in the item’s request message (typically INSTRUMENT_NAME_RIC = 1). If absent,
NameType defaults to INSTRUMENT_NAME_RIC = 1.

Table 63: Market Maker Update Message

9 Market Maker Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 107
EMAC380UMRDM.240

9.2.4 Market Maker Status Message
A Market Maker status message is encoded and sent by Open Message Model interactive provider and non-interactive provider applications.
This message conveys state change information associated with an item stream.

Name Conditional. Name is required if MsgKeyInUpdates was set to true. Name specifies the name of the item
being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. A Market Maker is represented by a Map, where each entry (MapEntry) contains a
FieldList which in turn contains information about a market maker.

NOTE: The provider should send the Name and ServiceName only in the first Refresh response message. However if MsgKeyInUpdates is
set to true, then the Name and ServiceName must be provided for every Status response message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_MARKET_MAKER = 9

State Optional. Specifies current state information associated with the data and stream.

Indications Optional.
ClearCache: true, indicates that the application should clear the cache.

QoS Optional. Specifies the QoS at which the stream is provided.

ItemGroup Optional. The provider can use this component to change the items’ ItemGroup.

PermissionData Optional. Specifies new permissioning information associated with all of the stream’s contents.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true. ServiceName specifies
the name of the service that provides the data.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true. ServiceId specifies the ID
of the service that provides the item.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true. NameType must match the
name type in the item’s request message (typically INSTRUMENT_NAME_RIC = 1). If absent,
NameType defaults to INSTRUMENT_NAME_RIC = 1.

Table 64: Market Maker Status Message

COMPONENT DESCRIPTION / VALUE

Table 63: Market Maker Update Message (Continued)

9 Market Maker Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 108
EMAC380UMRDM.240

9.2.5 Market Maker Post Message
If the provider supports Market Maker post messages, consumer applications can post Market Maker data. For more information on posting,
refer to the Enterprise Message API C++ Edition Developers Guide.

Name Conditional. Name is required if MsgKeyInUpdates was set to true. Name specifies the name of the item
being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Not used.

COMPONENT DESCRIPTION / VALUE

Table 64: Market Maker Status Message (Continued)

9 Market Maker Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 109
EMAC380UMRDM.240

9.3 Data

9.3.1 Response Message Payload

The payload is a Map. Refreshes for this Map may be in multiple response messages. The bandwidth of the Refresh response messages can
be optimized by putting multiple MapEntry in each Response message. For optimal performance the packed map entries in each response
message should use less than 6000 bytes. If the data is split into multiple messages, then a Map.TotalCountHint should be provided to
optimize downstream caching. Because the fields in each map entry are identical, bandwidth can be further optimized by DataDefinitions.

Figure 18. MarketMaker Response Message Payload

9.3.2 Summary Data
The Map.SummaryData only needs to be present in the first refresh part. Typical fields in the Map.SummaryData include:

• Permission information (PROD_PERM)

• Currency of the orders (CURRENCY)

• Trade Units for the precision at which order prices are set (TRD_UNITS)

• Identifier of the exchange on which the orders were placed (RDN_EXCHD2)

• Market State indicating the state of the market (MKT_ST_IND)

• Price ranking rules (PR_RNK_RUL)

• Quote Date (QUOTE_DATE)

9.3.3 MapEntry Contents
Each MapEntry.key’s data is a Buffer that contains a unique market maker’s ID. The Map.KeyFieldId may be set to MMID or
MKT_MKR_ID, so the information does not have to be repeated in the MapEntry.Data.

Each MapEntry houses a FieldList that contains information about the market maker.

9 Market Maker Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 110
EMAC380UMRDM.240

The field list typically includes:

• Bid (BID)

• Ask (ASK)

• Bid Size (BIDSIZE)

• Ask Size (ASKSIZE)

• Market Source (MKT_SOURCE)

• Market Maker Name (MKT_MKR_NM)

• Price Qualifiers (PRC_QL_CD and PRC_QL2)

• Quote Time (QUOTIM_MS)

9.4 Special Semantics

None.

9.5 Specific Usage: RDF Direct and the Response Message Payload

RDF Direct uses MARKET_MAKER for NASDAQ Market Makers.

The payload is a Map. Each Refresh message for this Map includes SummaryData and up to 50 MapEntrys. Updates are not sent for any
map entry until after the RefreshMsg.Complete is sent with a value of true. DataDefinitions are not used to reduce bandwidth. The
Map.TotalCountHint is not provided.

Map.SummaryData is sent in every refresh, even if it does not change. The fields used are from the RWFFld Field Dictionary:

• PROD_PERM (1): Integer for permission information

• CURRENCY (15): Enumeration of currency for the orders

• TRD_UNITS (53): Enumeration of trade Units for the precision for which order prices are set

• MKT_ST_IND (133): Enumeration of market state

• RDN_EXCHD2 (1709): Enumeration of exchange on which the orders were placed

• PR_RNK_RUL (3423): Enumeration of price ranking rules

The MapEntry.Key’s Data is a Buffer containing a unique market maker ID. The MapEntry.KeyFieldId is not set, but this may be
changed in the future.

The MapEntry.Data is a FieldList that contains some or all of the following information about the order:

• BID (22): Real with the best bid price from this market maker

• ASK (25): Real with the best ask price from this market maker

• BIDSIZE (30): Real with the size of the best bid

• ASKSIZE (31): Real with the size of the best ask

• MKT_MKR_ID (212): RmtesString with the Market Maker ID. This may be removed in the future by setting the Map.KeyFieldId to
MKT_MKR_ID (212) or MMID (3435).

• MKT_SOURCE (213): Enumeration with the Exchange or City of the quote

• MKT_MKR_NM (214): RmtesString with the Market Maker Name

• PRC_QL_CD (118): Enumeration for first price qualifier

• PRC_QL2 (131): Enumeration for second price qualifier

• QUOTIM_MS (3855): Quote Time in millisecond since GMT of the current day in the GMT time zone

9 Market Maker Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 111
EMAC380UMRDM.240

The FieldList.DictId is 0, so it should be ignored.

9.6 Specific Usage: RDMS

For the most part, MarketMaker data from Refinitiv Real-Time Distribution System is the same as it is from the original source of the data
(e.g., Refinitiv Data Feed Direct). However, if caching is enabled in an Refinitiv Real-Time Distribution System component, there will be two
differences.

The number of messages packed into each Refresh response message may be different.

An Update response message may be delivered between Refresh response messages, before RefreshMsg.Complete is sent with a true
value. It is up to the consumer application to apply the indicated changes.

10 Yield Curve Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 112
EMAC380UMRDM.240

10 Yield Curve Domain

10.1 Description

The Yield Curve domain shows the relation between the interest rate and the term (time to maturity) associated with the debt of a borrower.
The shape of a yield curve can help give an idea of future economic activity and interest rates. Information is sent as a FieldList, where
some FieldEntry‘s can contain more complex types such as Vector, Array, or ElementList.

This chapter documents the Yield Curve domain as provided by the Refinitiv Real-Time Advanced Transformation Server.

10.2 Usage

10.2.1 Yield Curve Request Message
A Yield Curve request message is encoded using ReqMsg and sent by Open Message Model consumer applications. The request specifies
the name and attributes of the curve in which the consumer is interested.

To receive updates, the consumer makes a “streaming” request by setting the ReqMsg.InterestAfterRefresh to true. If the flag is not set,
the consumer requests a “snapshot,” and the final part of the refresh (i.e., the refresh has the RefreshMsg.Complete flag set) indicates all
responses have been received for the snapshot. Updates may be received in either case if the refresh has multiple parts.

To stop updates, a consumer can pause an item (if the provider supports the pause feature). For additional details, refer to the Enterprise
Message API C++ Edition Developers Guide.

NOTE: The MMT_YIELD_CURVE Refinitiv Domain Model does not support GenericMsg(s).

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_YIELD_CURVE = 22

Interactions Conditional.
• InitialImage: true, requests an initial image.
• InterestAfterRefresh: true, requests streaming updates.
• Pause: true, requests that the application pause the item.

Indications Optional.
ConflatedInUpdates: true, requests that the application send conflated updates.
Batch and View request are specified in the Payload.

QoS Optional. Indicates the QoS at which the consumer wants the stream serviced. If both QoS and
worstQos are specified, this request can be satisfied by a range of QoS.

worstQos Optional. Used with the QoS member to define a range of acceptable QoS. When the provider encounters
such a range, it should attempt to provide the best QoS it can within that range.
worstQos should only be used on services that claim to support it via the SupportsQosRange item in
the Source Directory response (refer to Section 4.3.1.1).

NOTE: Enterprise Message API provides the Request.Qos() method to set both Qos and WorstQos
depending upon the timeliness and rate values.

Priority Optional. Indicates class and count associated with stream priority.

extendedHeader Not used.

Table 65: Yield Curve Request Message

10 Yield Curve Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 113
EMAC380UMRDM.240

ServiceName Required. Specifies the name of the service from which the consumer wishes to request the item.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

ServiceId Required. Specifies the ID of the service that provides the requested item.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Optional. When consuming from Refinitiv sources, typically set to INSTRUMENT_NAME_RIC = 1 (the
“Reuters Instrument Code”). If this is not specified, NameType defaults to INSTRUMENT_NAME_RIC =
1.

Name Required.Specifies the name of the requested item.

NOTE: Not used for Batch Item request.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Optional. When leveraging such features as View or Batch, the payload can contain information relevant
to that feature.
For more information, refer to Appendix A.

COMPONENT DESCRIPTION / VALUE

Table 65: Yield Curve Request Message (Continued)

10 Yield Curve Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 114
EMAC380UMRDM.240

10.2.2 Yield Curve Refresh Message
A Yield Curve Refresh Message is encoded using RefreshMsg and sent by Open Message Model provider and non-interactive provider
applications. This message sends all currently available information about the item to the consumer.

FieldList in the payload should include all fields that might be present in subsequent updates, even if those fields are currently blank.
When responding to a View request, this refresh should contain all fields requested by the specified view. If for any reason the provider
wishes to send new fields, it must first send an unsolicited refresh with both the new and currently-present fields.

NOTE: The provider should send the Name and ServiceName only in the first Refresh response message. However if MsgKeyInUpdates is
set to true in the Enterprise Message API configuration, then the Name and ServiceName must be provided for every Refresh response
message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_YIELD_CURVE = 22

State Required. Includes the state of the stream and data.

Solicited Required. Indicates whether the refresh was solicited. Available values are:
• true: The message was solicited.
• false: The message was unsolicited.

Indications Conditional.
• DoNotCache: true, indicates that the application should not cache this refresh message.
• ClearCache: true, indicates that the application should clear the cache.
• Complete: true, indicates that the message is the final one in the refresh.

PartNum Optional. Specifies the part number of a multi-part refresh.

QoS Optional. Specifies the QoS at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for
sequencing messages within this stream.

ItemGroup Required. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies permission information associated with content on this stream.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service that provides the item.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

ServiceId Required. Specifies the ID of the service that provides the item.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Optional. Should match the NameType specified in the request. If this is not specified, NameType defaults
to INSTRUMENT_NAME_RIC = 1.

Name Required. This should match the requested name.

Filter Not used.

Identifier Not used.

Attrib Not used.

Table 66: Yield Curve Refresh Message

10 Yield Curve Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 115
EMAC380UMRDM.240

10.2.3 Yield Curve Update Message
A Yield Curve Update Message is encoded using UpdateMsg and sent by Open Message Model provider and non-interactive provider
applications. It conveys any changes to an item’s data. Updates may be received between the first Refresh and the RefreshComplete. It is
the consuming application’s responsibility to determine if the update is applicable to the data that has previously been sent in a refresh.

Payload Required. This should consist of a FieldList containing all fields associated with the item. Some
FieldEntrys are sent as more complex types such as Vector and Array. Encoding and decoding
applications should be aware of this and ensure proper handling of these types.

NOTE: The provider should send the Name and ServiceName only in the first Refresh response message. However if MsgKeyInUpdates is
set to true, then the Name and ServiceName must be provided for every Refresh response message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_YIELD_CURVE = 22

UpdateTypeNum Required. Indicates the general content of the update. Typically sent as one of the following:
• INSTRUMENT_UPDATE_UNSPECIFIED = 0
• INSTRUMENT_UPDATE_QUOTE = 1

Indications Conditional.
• DoNotCache: true, indicates that the application should not cache this update message.
• DoNotConflate: true, indicates that the application should not conflate the update message.

SeqNum Optional. A user-specified, item-level sequence number which the application can use to sequence messages
in this stream.

PartNum Not used.

ConflatedCount Optional. If the provider sends a conflated update, ConflatedCount specifies how many updates are in the
conflation.
The consumer indicates interest in this information by setting the ReqMsg.ConflatedInUpdates to true in the
request.

ConflatedTime Optional. If a provider is sending a conflated update, ConflatedTime specifies the time interval (in
milliseconds) over which data is conflated.
The consumer indicates interest in this information by setting the ReqMsg.ConflatedInUpdates to true in the
request.

PermissionData Optional. Permissioning information associated with only the contents of this update.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true on the request. Specifies the
name of the service that provides the data.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true on the request. Specifies the ID of
the service that provides the item.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

Table 67: Yield Curve Update Message

COMPONENT DESCRIPTION / VALUE

Table 66: Yield Curve Refresh Message (Continued)

10 Yield Curve Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 116
EMAC380UMRDM.240

10.2.4 Yield Curve Status Message
A Yield Curve status message is encoded using StatusMsg and sent by Open Message Model interactive provider and non-interactive
provider applications. This message conveys state change information associated with an item stream.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true on the request. Should match the
NameType specified on the request. If this is not specified, NameType defaults to INSTRUMENT_NAME_RIC
= 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true on the request. Specifies the name of the
item being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. This should consist of a FieldList containing all fields associated with the item. Some
FieldEntrys are sent as more complex types such as Vector and Array. Encoding and decoding
applications should be aware of this and ensure proper handling of these types.

NOTE: The provider should send the Name and ServiceName only in the first Refresh response message. However if MsgKeyInUpdates is
set to true, then the Name and ServiceName must be provided for every Status response message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_YIELD_CURVE = 22

State Optional. Current state information associated with the data and stream.

Indications Optional.
ClearCache: true, indicates that the cache should be cleared.

QoS Optional. Specifies the QoS at which the stream is provided.

ItemGroup Optional. The provider can use this component to change the item’s ItemGroup.

PermissionData Optional. Specifies new permissioning information associated with all contents on the stream.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true on the request. Specifies the
name of the service that provides the data.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true on the request. Specifies the ID of
the service that provides the item.

NOTE: The application should set either the ServiceName or ServiceId of the service, but not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true on the request. Should match the
NameType specified on the request. If this is not specified, NameType defaults to INSTRUMENT_NAME_RIC =
1.

Table 68: Yield Curve Status Message

COMPONENT DESCRIPTION / VALUE

Table 67: Yield Curve Update Message (Continued)

10 Yield Curve Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 117
EMAC380UMRDM.240

10.2.5 Yield Curve Domain Post Message
If supported by the provider, consumer applications can post Yield Curve data. For more information on posting, refer to the Enterprise
Message API C++ Edition Developers Guide.

Name Conditional. Name is required if MsgKeyInUpdates was set to true on the request. Specifies the name of the
item being provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Not used.

COMPONENT DESCRIPTION / VALUE

Table 68: Yield Curve Status Message (Continued)

10 Yield Curve Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 118
EMAC380UMRDM.240

10.3 Data

10.3.1 Response Message Payload
The payload of a Yield Curve Refresh or Update is a FieldList. Some FieldEntry contents contain primitive type information to help
describe the curve. Examples include the Curve Type (CRV_TYPE), the Algorithm used to calculate the curve (CRV_ALGTHM), and the
Interpolation (INTER_MTHD) and Extrapolation (EXTRP_MTHD) methods. Because the fields in each Vector are the same, bandwidth can
be further optimized by DataDefinitions.

Other FieldEntry’s contain more complex information. The more complex entries are broken down into:

• Input Entries which define the different input data used to calculate the yield curve. Inputs are represented using non-sorted
Vector types. Examples of curve inputs would be cash rates (CASH_RATES), future prices (FUTR_PRCS), and swap rates
(SWAP_RATES).

• Output Entries which define the output of the yield curve calculation. Outputs are represented using non-sorted Vector types. An
example of curve outputs would be the Yield Curve (YLD_CURVE) itself.

• Extra Meta Data (EX_MET_DAT) which provides general data about the yield curve. This is represented using a ElementList
type. Extra meta data allows users to provide additional curve descriptions without needing to define new fields. Some examples of
meta data would be curve creation time or the curve’s owner.

Figure 19. Yield Curve Payload Example

10 Yield Curve Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 119
EMAC380UMRDM.240

10.3.2 Summary Data
For Vector types, Map.SummaryData can be included to provide information specific to the Vector‘s contents. Any Map.SummaryData
needs to be present only for the first refresh part that contains the Vector. Typical Map.SummaryData fields include tenors (TENORS).

10.3.3 Yield Curve Input and Output Entries
Each VectorEntry houses a FieldList that contains specific information about the respective input or output. The field list should be
decoded by checking the FieldEntry data type.

• For more information on dictionary use, refer to Section 5.2.

• For more information about use of the Vector and FieldList container types, refer to the Enterprise Message API C++ Edition
Developers Guide.

The following table contains additional information about input and output entries (all of which are of the Vector container type with a
container entry type of FieldList).

10.4 Special Semantics

None.

10.5 Specific Usage: ATS

When an application consumes Yield Curve data, the dictionary used by the application must contain certain required Field IDentifiers. For
further details, refer to the Refinitiv Real-Time Advanced Transformation Server documentation.

NAME FIELD NAME TYPE DESCRIPTION

Cash Rates CASH_RATES Input Contains cash rate data used to calculate the yield curve output. This typically
includes information like settlement date (CASH_SDATE), maturity date
(CASH_MDATE), and basis (CASH_BASIS).

Future Prices FUTR_PRCS Input Contains future pricing data used to calculate the yield curve output; typically
including data such as settlement date (FUTR_SDATE), maturity date
(FUTR_MDATE), and basis (FUTR_BASIS).

Swap Rates SWAP_RATES Input Contains swap rate data used to calculate the yield curve output; typically
including data such as settlement date (SWAP_SDATE), maturity date
(SWAP_MDATE), swap rate value (SWAP_RATE_VAL), and roll date
(SWAP_RDATE).

Spread Rates SPRD_RATES Input Contains spread rate data used to calculate yield curve output; typically including
data such as spread frequency (SPRD_FREQ), maturity date (SPRD_MDATE),
spread rate (SPRD_RATE), and roll date (SPRD_RDATE).

Yield Curve YLD_CURVE Output Contains calculated Yield Curve data; typically including data such as zero rate
(YCT_ZRATE), forward rate (YCT_FWRATE), and discount factor
(YCT_DISFAC).

Table 69: Yield Curve Inputs and Outputs

11 Symbol List Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 120
EMAC380UMRDM.240

11 Symbol List Domain

11.1 Description

The Symbol List domain provides access to a set of symbol names, typically from an index, service, or cache. Content is encoded as a Map,
with each symbol represented by a map entry and where the symbol name is the entry key. An entry’s payload is optional, but when present
the payload is a FieldList that contains additional cross-reference information such as permission information, name type, or other
venue-specific content.

11.2 Usage

11.2.1 Symbol List Request Message
A Symbol List request message is encoded and sent by Open Message Model consumer applications.

The consumer can make a streaming request (set ReqMsg.InterestAfterRefresh to true) to receive updates, typically associated with item
additions or removals from the list.

NOTE: GenericMsg(s) are not supported for MMT_SYMBOL_LIST Refinitiv Domain Model.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_SYMBOL_LIST = 10

Interactions Conditional.
• InitialImage: true, indicates that an initial image is required.
• InterestAfterRefresh: true, indicates that a streaming request is required.
• Pause: true, indicates that a pause is required.

Indications Optional.
ConflateInUpdates: true, indicates that conflated updates are required.
Batch and View requests are specified in the Payload.

QoS Not used.

worstQos Not used.

Priority Optional. Indicates class and count associated with stream priority.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service from which the consumer wants to request the item.

NOTE: The consumer application should set either the ServiceName or ServiceId of the service, but
not both.

ServiceId Required. Specifies the ID of the service that provides the requested item.

NOTE: The consumer application should set either the ServiceName or ServiceId of the service, but
not both.

NameType Optional. NameType should match name type specified in the request. When consuming from Refinitiv
sources, NameType is typically set to INSTRUMENT_NAME_RIC = 1 (the “Reuters Instrument Code”). If
absent, NameType defaults to INSTRUMENT_NAME_RIC = 1.

Table 70: Symbol List Request Message

11 Symbol List Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 121
EMAC380UMRDM.240

Name Required. Specifies the name of the requested item.

NOTE: Not used for Batch Item requests.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Optional. When leveraging such features as View, Batch, or behaviors related to the Symbol List
Request, the payload can contain information relevant to that feature. For more detailed information, refer
to Appendix A.

COMPONENT DESCRIPTION / VALUE

Table 70: Symbol List Request Message (Continued)

11 Symbol List Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 122
EMAC380UMRDM.240

11.2.2 Symbol List Refresh Message
A Symbol List refresh Message is encoded using RefreshMsg and sent by Open Message Model provider and non-interactive provider
applications. This message sends a list of item names to the consumer.

A Symbol List refresh can be sent in multiple parts. Update and status messages can be delivered between parts of a refresh message,
regardless of streaming or non-streaming request.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_SYMBOL_LIST = 10

State Required. Indicates the state of the stream and data.

Solicited Required. Indicates whether the refresh was solicited. Available values are:
• true: The message was solicited.
• false: The message was unsolicited.

Indications Conditional.
• DoNotCache: true, requests that the application not cache this refresh message.
• ClearCache: true, requests that the application clear the cache.
• Complete: true, indicates that this message completes the refresh.

PartNum Optional. Specifies the part number of a multi-part refresh.

QoS Optional. Specifies the quality of service at which the stream is provided.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for
sequencing messages within this stream.

ItemGroup Optional. Associates the item with an Item Group (refer to Section 4.3.1.3).

PermissionData Optional. Specifies the permission information associated with content on this stream.

extendedHeader Not used.

ServiceName Required. Specifies the name of the service from which the consumer wants to request the item.

NOTE: The consumer application should set either the ServiceName or ServiceId of the service, but
not both.

ServiceId Required. Specifies the ID of the service that provides the item.

NOTE: The consumer application should set either the ServiceName or ServiceId of the service, but
not both.

NameType Optional. NameType should match the NameType specified in the request. If absent, it is assumed to be
INSTRUMENT_NAME_RIC = 1.

Name Required. Name should match the requested name.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Required. The payload contains a Map where each entry represents an item in the list. Each map entry
contains a FieldList or ElementList with additional info about that item.

Table 71: Symbol List Refresh Message

11 Symbol List Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 123
EMAC380UMRDM.240

11.2.3 Symbol List Update Message
A Symbol List Update Message is encoded using UpdateMsg and sent by Open Message Model provider and non-interactive provider
applications. It adds or removes items from the list. Updates will not be received before images, and a true snapshot is supported.

NOTE: The provider should send the Name and ServiceName only in the first Refresh response message. However if MsgKeyInUpdates is
set to true, then the Name and ServiceName must be provided for every Update response message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_SYMBOL_LIST = 10

Indications Conditional.
• DoNotCache: true, indicates to not cache this update message.
• DoNotConflate: true, indicates to not conflate the update message.

QoS Optional. Specifies the quality of service at which the stream is provided.

UpdateTypeNum Not used.

SeqNum Optional. A user-specified, item-level sequence number which can be used by the application for
sequencing messages within this stream.

ConflatedCount Optional. If a provider sends a conflated update, ConflatedCount specifies how many updates are in
the conflation.
The consumer indicates interest in this information by setting the ReqMsg.ConflatedInUpdates is set
to true in the request.

ConflatedTime Optional. If a provider sends a conflated update, ConflatedTime specifies the time interval (in
milliseconds) over which data is conflated.
The consumer indicates interest in this information by setting the ReqMsg.ConflatedInUpdates is set
to true in the request.

PermissionData Optional. Specifies the permission information associated with only the contents of this update.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true. ServiceName specifies
the name of the service that provides the data.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true. Specifies the ID of the
service that provides the item.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true. Set this to match the
NameType in the item’s request message (typically INSTRUMENT_NAME_RIC = 1). If absent, it is
assumed to be INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true. Specifies the name of the item being
provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Table 72: Symbol List Update Message

11 Symbol List Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 124
EMAC380UMRDM.240

11.2.4 Symbol List Status Message
A Symbol List status message is encoded using StatusMsg and sent by Open Message Model interactive provider and non-interactive
provider applications. This message conveys state change information associated with an item stream.

Payload Required. The payload contains a Map, where each entry represents an item in the list. Each map entry
contains a FieldList with additional information about that item.

NOTE: The provider should send the Name and ServiceName only in the first Refresh response message. However if MsgKeyInUpdates is
set to true, then the Name and ServiceName must be provided for every Status response message.

COMPONENT DESCRIPTION / VALUE

DomainType Required. MMT_SYMBOL_LIST = 10

State Optional. Current state information associated with the data and stream.

Indications Conditional.
ClearCache: true, indicates to clear the cache.

QoS Optional. Specifies the quality of service at which the stream is provided.

ItemGroup Optional. The provider can use this to change the item’s ItemGroup.

PermissionData Optional. Specifies new permissioning information associated with the stream’s contents.

extendedHeader Not used.

ServiceName Conditional. ServiceName is required if MsgKeyInUpdates was set to true. ServiceName specifies
the name of the service that provides the data.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

ServiceId Conditional. ServiceId is required if MsgKeyInUpdates was set to true. Specifies the ID of the
service that provides the item.

NOTE: The provider application should set either the ServiceName or ServiceId of the service, but
not both.

NameType Conditional. NameType is required if MsgKeyInUpdates was set to true. NameType should match the
name type specified on the request. If it is not specified, NameType defaults to
INSTRUMENT_NAME_RIC = 1.

Name Conditional. Name is required if MsgKeyInUpdates was set to true. Specifies the name of the item being
provided.

Filter Not used.

Identifier Not used.

Attrib Not used.

Payload Not used.

Table 73: Symbol List Status Message

COMPONENT DESCRIPTION / VALUE

Table 72: Symbol List Update Message (Continued)

11 Symbol List Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 125
EMAC380UMRDM.240

11.3 Data: Response Message Payload

DomainTypeThe Symbol List payload is a Map. Each MapEntry key is an AsciiString symbol. The entry’s payload can be empty or contain a
FieldList which can contain additional information (i.e., permission data and cross-reference information). This information should not
update frequently.

A FieldList typically includes the fields:

• PROV_SYMB (3422): Contains the original symbol as provided by the exchange

• PROD_PERM (1): Stores permission information

Figure 20. SymbolList Response Message Payload

11.4 Special Semantics

None.

11 Symbol List Domain

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 126
EMAC380UMRDM.240

11.5 Specific Usage

The payload is a Map. No SummaryData is provided. Each Refresh message includes up to 150 MapEntrys. DataDefinitions are not used to
reduce bandwidth. The Map.TotalCountHint is not provided. The Map.KeyFieldId is currently not set.

Each MapEntry’s key is a Buffer that can be used as a request’s Name to make a request for an instrument. Each MapEntry’s value is a
FieldList that contains the following information:

• PROV_SYMB (3422): Original symbol provided by the exchange

• PROD_PERM (1): Permission information

The OPRA Venue’s SymbolList, 0#OPRA is a hierarchical SymbolList of SymbolLists. Nested SymbolLists start with Z#. For details, refer to
the RDF Direct OPRA Venue Guide.

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 127
EMAC380UMRDM.240

Appendix A ReqMsg Payload

A.1 View Definition
The client application can specify interest in a specific subset of fields or elements (known as a ‘View’). This is done by encoding an array of
the desired fields or elements in the request message payload. The response Message will contain a list of the requested fields or elements
and possibly some others depending on factors such as aggregation and the ability of the provider to supply the requested view. Unless
otherwise specified, this is supported on any non-administrative Refinitiv Domain Model and any user defined DMM. For more information,
refer to the Enterprise Message API C++ Edition Developers Guide. When requesting a new view or changing a view, at a minimum, the
request message payload contains an element list with the following entries (any default behavior is included in the element’s description):

A.2 ItemList
The client application can specify interest in multiple items by using a single batch request message. To do this, encode a list of item names
in the request message payload. This is supported on any non-administrative Refinitiv Domain Model and any user defined DMM. For further
details, refer to Enterprise Message API C++ Edition Reference Guide.

For batch request messages, the payload contains, at a minimum, an element list which includes the following element entry:

ELEMENT NAME TYPE RANGE/EXAMPLES DESCRIPTION

:ViewType UInt 1 | 2 Conditional. Specifies the content type of the
:ViewData array.
Required when specifying a view or when reissuing
while wanting to keep the same view.
Not required when re-issuing to remove a view. In this
case, do not send a payload or view.
Available values are:
• 1 = VT_FIELD_ID_LIST (this is the default)
• 2 = VT_ELEMENT_NAME_LIST

:ViewData Array of Int or
Array of ASCII

An Array of desired entries whose
content matches the type as specified
by :ViewType.
e.g., a :ViewType of
VT_FIELD_ID_LIST uses an array of
field IDs.

Required. Field Ids will be encoded as an array of 2
byte fixed length field identifiers.
Element names will be variable length Ascii string fields.
:ViewData does not use a default value.

Table 74: View Definition in Payload

ELEMENT NAME TYPE RANGE/EXAMPLES DESCRIPTION

:ItemList Array of ASCII 1 to Array
max

Required. A list of item names in which the client
registers interest.
:ItemList does not use a default value.

Table 75: ItemList in Payload

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 128
EMAC380UMRDM.240

A.3 Symbol List Behaviors
The client application can specify interest in getting data along with names belonging to the symbol list while requesting a symbol list. By
specifying interest in data along with names, a client application does not need to open individual items belonging to symbol list and the
items will be opened and data will be provided. To do this, encode a request message payload with an element list that has an element entry
which specifies symbol list behavior.

For Symbol List request messages that specify interest in data, refer to Appendix A.3.1.

For further details, refer to Enterprise Message API C++ Edition Reference Guide.

Figure 21. SymbolList Request Message Payload Specifying Symbol List Behavior

A.3.1 Element List Contents
To encode a Symbol List request message that specifies interest in data, include an element list with the following element entry:

ELEMENT NAME TYPE DEFAULT DESCRIPTION

:SymbolListBehaviors ElementList ElementList containing
ElementEntry of DataStreams
set to 0.

Indicates any expected data behavior of individual
items that will be opened from the symbol list.
If this element is absent, individual streams will not
be opened.
The contents of :SymbolListBehaviors are
extensible.

Table 76: Request Message Payload for Symbol List Domain Specifying Symbol List Behaviors

Enterprise Message API C++ Edition 3.8.0.L1 - Refinitiv Domain Model Usage Guide 129
EMAC380UMRDM.240

A.3.2 Contents of :SymbolListBehaviors
The following is the contents of the :SymbolListBehaviors element entry.

ELEMENT NAME TYPE RANGE DESCRIPTION

:DataStreams UInt 0 - 2 Indicates whether the consumer wants the individual items of the symbol list to
be opened as streaming or non-streaming or not opened at all. For more
information refer to the Enterprise Message API C++ Edition Developers Guide.
:DataStreams uses the following bit-masks:
• 0x0: The consumer is interested only in getting the names and no data on

the individual items of the symbol list. This is the default behavior.
• 0x1: The consumer is interested in getting the individual items of the symbol

list opened as streaming.
• 0x2: The consumer is interested in getting the individual items of the symbol

list opened as snap-shots.

Table 77: :SymbolListBehaviors ElementEntry Contents

© 2015 - 2024 Refinitiv. All rights reserved.

Republication or redistribution of Refinitiv content, including by framing or similar means, is prohibited
without the prior written consent of Refinitiv. 'Refinitiv' and the Refinitiv logo are registered trademarks
and trademarks of Refinitiv.

Any third party names or marks are the trademarks or registered trademarks of the relevant third party.

Document ID: EMAC380UMRDM.240
Date of issue: April 2024

	1 Introduction
	1.1 About this Manual
	1.2 Audience
	1.3 Open Message Model
	1.4 Refinitiv Wire Format
	1.5 JSON
	1.6 References
	1.7 Documentation Feedback
	1.8 Conventions
	1.8.1 Typographic
	1.8.2 General Transport API Syntax
	1.8.3 Definitions and Standard Behaviors

	1.9 Acronyms and Abbreviations

	2 Domain Model Overview
	2.1 What is a Domain Message Model?
	2.2 Refinitiv Domain Models Vs User-Defined Models
	2.2.1 Refinitiv Domain Models
	2.2.2 User-Defined Domain Model
	2.2.3 Domain Message Model Creation

	2.3 Message Concepts
	2.4 Consumer / Interactive Provider Initial Interaction
	2.5 Sending and Receiving Content
	2.6 General Enterprise Message API Concepts
	2.6.1 Snapshot and Streaming Requests
	2.6.2 Reissue Requests and Pause/Resume
	2.6.3 Clearing the Cache on Refreshes
	2.6.4 Dynamic View
	2.6.5 Batch Request
	2.6.6 Posting

	3 Login Domain
	3.1 Description
	3.2 Usage
	3.2.1 Login Request Message
	3.2.2 Login Request Elements
	3.2.3 Login Request Domain Representation
	3.2.4 Login Refresh Message
	3.2.5 Login Refresh Elements
	3.2.6 Login Refresh Domain Representation
	3.2.7 Login Status Message
	3.2.8 Login Status Elements
	3.2.9 Login Status Domain Representation
	3.2.10 Login Update Message
	3.2.11 Login Close Message
	3.2.12 Login Generic Message Use
	3.2.12.1 RTT Login Generic Message

	3.2.13 Login Post Message
	3.2.14 Login Ack Message

	3.3 Data
	3.3.1 Login Refresh Message Payload
	3.3.2 Login Generic Message Payloads
	3.3.2.1 Login Consumer Connection Status Message Payload
	3.3.2.2 RTT Login Generic Message Payload

	3.4 Special Semantics
	3.4.1 Login Direction
	3.4.2 Initial Login
	3.4.3 Multiple Logins
	3.4.4 Group and Service Status
	3.4.5 Single Open and Allow Suspect Data Behavior

	3.5 Specific Usage: RDF Direct Login
	3.6 Specific Usage: RDMS
	3.7 Specific Usage: Login Credentials Update Feature

	4 Source Directory Domain
	4.1 Description
	4.2 Usage
	4.2.1 Source Directory Request Message
	4.2.2 Source Directory Refresh Message
	4.2.3 Source Directory Update Message
	4.2.4 Source Directory Status Message
	4.2.5 Source Directory Generic Message

	4.3 Data
	4.3.1 Source Directory Refresh and Update Payload
	4.3.1.1 Source Directory Info Filter Entry
	4.3.1.2 Source Directory State Filter Entry
	4.3.1.3 Source Directory Group Filter Entry
	4.3.1.4 Source Directory Load Filter Entry
	4.3.1.5 Source Directory Data Filter Entry
	4.3.1.6 Source Directory Link Filter Entry

	4.3.2 Source Directory ConsumerStatus Generic Message Payload

	4.4 Special Semantics
	4.4.1 Multiple Streams
	4.4.2 Service IDs
	4.4.3 ServiceState and AcceptingRequests
	4.4.4 Service and Group Status Values
	4.4.4.1 Service Status
	4.4.4.2 Group Status

	4.4.5 Removing a Service
	4.4.6 Automatic Request from Enterprise Message API Consumer
	4.4.7 Client Requests Non-Existing Service Directory

	5 Dictionary Domain
	5.1 Description
	5.2 Decoding Field List Contents with Field and Enumerated Types Dictionaries
	5.3 Usage
	5.3.1 Dictionary Request Message
	5.3.2 Dictionary Refresh Message
	5.3.3 Dictionary Status Message

	5.4 Data
	5.4.1 Filter
	5.4.2 Refresh Message Summary Data
	5.4.3 Response Message Payload
	5.4.4 DictionaryId

	5.5 Field Dictionary
	5.5.1 Field Dictionary Payload
	5.5.2 Field Dictionary File Format
	5.5.2.1 Field Dictionary Tag Attributes
	5.5.2.2 Field Dictionary Columns
	5.5.2.3 RWFTYPE Keywords
	5.5.2.4 FIELD TYPE Keywords
	5.5.2.5 Custom FIDs

	5.5.3 Specific Usage: RDF Direct and FieldDefinition Dictionary

	5.6 Enumerated Types Dictionary
	5.6.1 Enumerated Types Dictionary Payload
	5.6.2 Enumerated Types Dictionary File Format
	5.6.2.1 Enumerated Types Dictionary File Example
	5.6.2.2 Tagged Attributes
	5.6.2.3 Reference Fields Section
	5.6.2.4 Values Table Section

	5.6.3 Specific Usage: RDF Direct and EnumTable Dictionary

	5.7 Special Semantics
	5.7.1 DictionariesProvided and DictionariesUsed
	5.7.2 Version Information
	5.7.2.1 Version Information Usage
	5.7.2.2 Handling Dictionary Version Changes

	5.8 Other Dictionary Types
	5.9 Specific Usage: RDMS

	6 Market Price Domain
	6.1 Description
	6.2 Usage
	6.2.1 Market Price Request Message
	6.2.2 Market Price Refresh Message
	6.2.3 Market Price Update Message
	6.2.4 Market Price Status Message
	6.2.5 Market Price Post Message

	6.3 Data: Response Message Payload
	6.4 Special Semantics
	6.4.1 Snapshots
	6.4.2 Ripple Fields

	6.5 Specific Usage: RDF Direct MarketPrice
	6.6 Specific Usage: Legacy Records

	7 Market By Order Domain
	7.1 Description
	7.2 Usage
	7.2.1 Market By Order Request Message
	7.2.2 Market By Order Refresh Message
	7.2.3 Market By Order Update Message
	7.2.4 Market By Order Status Message
	7.2.5 Market By Order Post Message

	7.3 Data
	7.3.1 Response Message Payload
	7.3.2 Summary Data
	7.3.3 MapEntry Contents

	7.4 Special Semantics
	7.5 Specific Usage: RDF Direct and Response Message Payload
	7.6 Specific Usage: RDMS

	8 Market By Price Domain
	8.1 Description
	8.2 Usage
	8.2.1 Market By Price Request Message
	8.2.2 Market By Price Refresh Message
	8.2.3 Market By Price Update Message
	8.2.4 Market By Price Status Message
	8.2.5 Market By Price Post Message

	8.3 Data
	8.3.1 Response Message Payload
	8.3.2 Summary Data
	8.3.3 MapEntry.Key Contents

	8.4 Special Semantics
	8.5 Specific Usage: RDF Direct and the Response Message Payload
	8.6 Specific Usage: RDMS

	9 Market Maker Domain
	9.1 Description
	9.2 Usage
	9.2.1 Market Maker Request Message
	9.2.2 Market Maker Refresh Message
	9.2.3 Market Maker Update Message
	9.2.4 Market Maker Status Message
	9.2.5 Market Maker Post Message

	9.3 Data
	9.3.1 Response Message Payload
	9.3.2 Summary Data
	9.3.3 MapEntry Contents

	9.4 Special Semantics
	9.5 Specific Usage: RDF Direct and the Response Message Payload
	9.6 Specific Usage: RDMS

	10 Yield Curve Domain
	10.1 Description
	10.2 Usage
	10.2.1 Yield Curve Request Message
	10.2.2 Yield Curve Refresh Message
	10.2.3 Yield Curve Update Message
	10.2.4 Yield Curve Status Message
	10.2.5 Yield Curve Domain Post Message

	10.3 Data
	10.3.1 Response Message Payload
	10.3.2 Summary Data
	10.3.3 Yield Curve Input and Output Entries

	10.4 Special Semantics
	10.5 Specific Usage: ATS

	11 Symbol List Domain
	11.1 Description
	11.2 Usage
	11.2.1 Symbol List Request Message
	11.2.2 Symbol List Refresh Message
	11.2.3 Symbol List Update Message
	11.2.4 Symbol List Status Message

	11.3 Data: Response Message Payload
	11.4 Special Semantics
	11.5 Specific Usage

	Appendix A ReqMsg Payload
	A.1 View Definition
	A.2 ItemList
	A.3 Symbol List Behaviors
	A.3.1 Element List Contents
	A.3.2 Contents of :SymbolListBehaviors

