
Document Version: 3.8.0
Date of issue: April 2024
Document ID: EMAC380PETOO.240

Full_Product_Name and
Version (e.g: ATS V1.5)

Enterprise Message API
C++ Edition
3.8.0.L1

OPEN SOURCE PERFORMANCE TOOLS GUIDE

Enterprise Message API C++ Edition3.8.0.L1 – Open Source Performance Tools Guide ii
EMAC380PETOO.240

Legal Information

© Refinitiv 2016 - 2024. All rights reserved.

Republication or redistribution of Refinitiv content, including by framing or similar means, is prohibited without the prior written consent of
Refinitiv. ‘Refinitiv’ and the Refinitiv logo are registered trademarks and trademarks of Refinitiv.

Any software, including but not limited to: the code, screen, structure, sequence, and organization thereof, and its documentation are
protected by national copyright laws and international treaty provisions. This manual is subject to U.S. and other national export regulations.

Refinitiv, by publishing this document, does not guarantee that any information contained herein is and will remain accurate or that use of the
information will ensure correct and faultless operation of the relevant service or equipment. Refinitiv, its agents, and its employees, shall not
be held liable to or through any user for any loss or damage whatsoever resulting from reliance on the information contained herein.

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide iii
EMAC380PETOO.240

Contents

Contents

1 Introduction .. 1
1.1 About this Manual ... 1
1.2 Audience ... 1
1.3 Programming Language.. 1
1.4 Acronyms and Abbreviations .. 1
1.5 References.. 2
1.6 Documentation Feedback ... 2
1.7 Document Conventions... 3

1.7.1 Typographic .. 3
1.7.2 Diagrams .. 4

2 Open Source Performance Tool Suite Overview... 5
2.1 Overview ... 5
2.2 Enterprise Message API Performance Tool Suite... 6
2.3 Package Contents... 7

2.3.1 Building ... 8
2.3.2 Running .. 8

2.4 What Is Measured and Reported .. 8
2.4.1 Latency ... 8
2.4.2 Throughput and Payload .. 8
2.4.3 Image Retrieval Time.. 8
2.4.4 CPU & Memory Usage ... 8

2.5 Recorded Results and Output... 9
2.5.1 Summary File.. 9
2.5.2 Statistics File... 9
2.5.3 Latency File .. 9

3 Latency Measurement Details... 10
3.1 Time-slicing ... 10
3.2 Latency.. 11

4 Consumer Performance Tool .. 12
4.1 Overview ... 12
4.2 Threading and Scaling .. 12

4.2.1 Consumer Lifecycle .. 13
4.2.2 Application Flow Diagram... 14

4.3 Latency Measurement... 14
4.3.1 Consumer Latency.. 14
4.3.2 Posting Latency .. 15

4.4 EmaCppConsPerf Configuration Options ... 16
4.5 Input .. 20

4.5.1 EmaConfig.xml Examples... 20
4.6 Output ... 21

4.6.1 EmaCppConsPerf Summary File Sample .. 21
4.6.2 EmaCppConsPerf Statistics File Sample ... 23
4.6.3 EmaCppConsPerf Latency File Sample ... 23
4.6.4 EmaCppConsPerf Console Output Sample.. 24

5 Interactive Provider Performance Tool .. 25
5.1 Overview ... 25

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide iv
EMAC380PETOO.240

5.2 Threading and Scaling .. 25
5.3 Provider Lifecycle.. 26

5.3.1 Application Flow Diagram... 27
5.4 Latency Measurement... 28
5.5 EmaCppIProvPerf Configuration Options ... 28
5.6 Input Files.. 31

5.6.1 EmaConfig.xml Examples... 31
5.7 Output ... 34

5.7.1 EmaCppIProvPerf Summary File Sample .. 34
5.7.2 EmaCppIProvPerf Statistics File Sample ... 35
5.7.3 EmaCppIProvPerf Console Output Sample.. 35

6 Non-Interactive Provider Performance Tool .. 36
6.1 Overview ... 36
6.2 Threading and Scaling .. 36
6.3 Non-Interactive Provider Lifecycle .. 36
6.4 Latency Measurement... 38
6.5 EmaCppNIProvPerf Configuration Options... 38
6.6 Input Files.. 42

6.6.1 EmaConfig.xml Examples... 42
6.7 Output ... 44

6.7.1 EmaCppNIProvPerf Summary File Sample.. 45
6.7.2 EmaCppNIProvPerf Statistics File Sample... 45
6.7.3 EmaCppNIProvPerf Console Output Sample... 46

7 Performance Measurement Scenarios... 47
7.1 Interactive Provider to Consumer, Through Refinitiv Real-Time Distribution System................................... 47
7.2 Interactive Provider to Consumer, Direct Connect.. 48
7.3 Non-Interactive Provider to Consumer, Through Refinitiv Real-Time Distribution System 49
7.4 Consumer Posting on the Refinitiv Real-Time Distribution System .. 50

8 Input File Details .. 51
8.1 Message Content File and Format.. 51

8.1.1 Encoding Fields .. 51
8.1.2 Sample Update Message ... 52
8.1.3 Sample MarketByOrder Data.. 52

8.2 Item List File.. 55
8.2.1 Item Attributes... 55
8.2.2 Sample Item List File .. 55

9 Output File Details ... 57
9.1 Overview ... 57
9.2 Output Files and Their Descriptions.. 57
9.3 Latency File... 58
9.4 File Import ... 59

10 Performance Best Practices ... 60
10.1 Overview ... 60
10.2 Enterprise Message API Best Practices .. 60

10.2.1 dispatch .. 60
10.2.2 submit ... 60
10.2.3 High-water Mark ... 60
10.2.4 Nagle’s Algorithm.. 61
10.2.5 System Send and Receive Buffers ... 61

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide v
EMAC380PETOO.240

10.2.6 Enterprise Message API Buffering.. 62
10.2.7 Compression... 63

10.3 Encoder and Decoder Best Practices ... 63
10.3.1 Single-Pass Encoding... 63

10.4 Other Practices: CPU Binding... 63

Appendix A Troubleshooting.. 64
A.1 Can’t Connect .. 64
A.2 Not Achieving Steady State ... 64
A.3 Consumer Tops Out but Not at 100% CPU ... 65
A.4 Initial Latencies Are High ... 65
A.5 Latency values Are Very High.. 65

Enterprise Message API 3.8.0.L1 C++ Edition – Open Source Performance Tools Guide vi
EMAC380PETOO.240

List of Figures

Contents

Figure 1. Running Performance Example and Host Notation .. 4
Figure 2. Network Diagram Notation .. 4
Figure 3. Three Connection Options for the Open Message Model-based Performance Tools 6
Figure 4. .. 6
Figure 5. Directory Structure of the Performance Tools... 7
Figure 6. Time Slicing Algorithm .. 10
Figure 7. Refresh Publishing Algorithm.. 10
Figure 8. Latency Reuters Instrument Codes within a Tick.. 11
Figure 9. Timing Diagram for Latency Measurements ... 11
Figure 10. EmaCppConsPerf Lifecycle .. 13
Figure 11. EmaCppConsPerf Application Flow .. 14
Figure 12. EmaCppIProvPerf Application Flow .. 26
Figure 13. EmaCppIProvPerf Application Flow .. 27
Figure 14. EmaCppNIProvPerf Lifecycle.. 36
Figure 15. EmaCppNIProvPerf Application Flow ... 37
Figure 16. Interactive Provider to Consumer on Refinitiv Real-Time Distribution System ... 47
Figure 17. Interactive Provider to Consumer, Direct Connect.. 48
Figure 18. EmaCppNIProvPerf to Consumer on the Refinitiv Real-Time Distribution System....................................... 49
Figure 19. Consumer Posting to Refinitiv Real-Time Distribution System ... 50
Figure 20. Sample Excel Graph from ConsStats1.csv ... 59
Figure 21. Sample Excel Graph of Latencies Over a 15-second Steady State Interval from ConsLatency1.csv 59
Figure 22. Refinitiv Real-Time Advanced Distribution Server distribution.cnf .. 65

Enterprise Message API 3.8.0.L1 C++ Edition – Open Source Performance Tools Guide vii
EMAC380PETOO.240

List of Tables

Contents

Table 1: Acronyms and Abbreviations .. 1
Table 2: EmaCppConsPerf Configuration Options ... 16
Table 3: EmaCppIProvPerf Configuration Options ... 28
Table 4: EmaCppNIProvPerf Configuration Options... 38
Table 5: Item Attributes ... 55
Table 6: Performance Suite Applications and Associated Configuration Files ... 57

1 Introduction

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 1
EMAC380PETOO.240

1 Introduction

1.1 About this Manual

This guide introduces the Enterprise Enterprise Message API C++ Edition of the performance suite. It presents an overview of how
performance suite applications work with the Refinitiv Real-Time Distribution System, how the applications themselves work, and how
application tests are run. It also provides an overview of the basic concepts of writing performant applications, as well as configuring both the
applications and the Enterprise Message API for optimal performance.

Authors and contributors include Enterprise Message API architects and developers who encountered and resolved many of issues you
might face. As such, this document is concise and addresses realistic scenarios and use cases.

This guide documents the general design and usage of the tools provided for measuring the performance. It describes how features of the
API send and receive data with high throughput and low latency. This information applies both when the API connects directly to itself as well
as when using intermediaries, such as Refinitiv Real-Time Distribution System components like that Refinitiv Real-Time Advanced Data Hub
and Refinitiv Real-Time Advanced Distribution Server.

1.2 Audience

This document is written to help programmers take advantage of Enterprise Message API features and achieve high throughput and low
latency with their applications. The information detailed herein assumes that the reader is a user or a member of the programming staff
involved in the design, code, and test phases for applications that will use the Enterprise Message API. It is assumed that you are familiar
with the data types, operational characteristics, and user requirements of real-time data delivery networks, and that you have experience
developing products using the C programming language in a networked environment. It is assumed that the reader has read the Message
API C Edition Developer’s Guide to have a basic familiarity with the API Transport and the interaction models of OMM Consumers, OMM
Interactive Providers, and OMM Non-Interactive Providers.

1.3 Programming Language

The Enterprise Message API C edition is written to the C language. All code samples in this document and all example applications provided
with the product are written in C.

1.4 Acronyms and Abbreviations

ACRONYM DEFINITION

ADH Refinitiv Real-Time Advanced Data Hub

ADS Refinitiv Real-Time Advanced Distribution Server

API Application Programming Interface

CPU Central Processing Unit

DMM Domain Message Model

Enterprise Message API (EMA) The Enterprise Message API (EMA) is an ease of use, open source, Open Message
Model API. EMA is designed to provide clients rapid development of applications,
minimizing lines of code and providing a broad range of flexibility. It provides flexible
configuration with default values to simplify use and deployment. EMA is written on top
of the Enterprise Transport API (ETA) utilizing the Value Added Reactor and Watchlist
features of ETA.

Table 1: Acronyms and Abbreviations

1 Introduction

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 2
EMAC380PETOO.240

1.5 References

• Enterprise Message API C++ Edition Developers Guide

• Enterprise Message API C++ Edition Refinitiv Domain Model Usage Guide

• Enterprise Message API C++ Edition Configuration Guide

• Enterprise Transport API C Edition Value Added Components Developers Guide

• The Refinitiv Developer Community

1.6 Documentation Feedback

While we make every effort to ensure the documentation is accurate and up-to-date, if you notice any errors, or would like to see more
details on a particular topic, you have the following options:

• Send us your comments via email at ProductDocumentation@refinitiv.com.

• Add your comments to the PDF using Adobe’s Comment feature. After adding your comments, submit the entire PDF to Refinitiv by
clicking Send File in the File menu. Use the ProductDocumentation@refinitiv.com address.

Enterprise Transport API (ETA) Enterprise Transport API is a high performance, low latency, foundation of the Refinitiv
Real-Time SDK. It consists of transport, buffer management, compression, fragmentation
and packing over each transport and encoders and decoders that implement the Open
Message Model. Applications written to this layer achieve the highest throughput, lowest
latency, low memory utilization, and low CPU utilization using a binary Refinitiv Wire
Format when publishing or consuming content to/from Refinitiv Real-Time Distribution
Systems.

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol (Secure)

NIC Network Interface Card

OMM Open Message Model

OS Operating System

RAM Random Access Memory

RDM Refinitiv Domain Model

RFA Robust Foundation API

RSSL Refinitiv Source Sink Library

Refinitiv Real-Time
Distribution System

Refinitiv Real-Time Distribution System is Refinitiv’s financial market data distribution
platform. It consists of the Refinitiv Real-Time Advanced Distribution Server and Refinitiv
Real-Time Advanced Data Hub. Applications written to the Refinitiv Real-Time SDK can
connect to this distribution system.

Reactor The Reactor is a low-level, open-source, easy-to-use layer above the Enterprise
Transport API. It offers heartbeat management, connection and item recovery, and many
other features to help simplify application code for users.

RWF Refinitiv Wire Format

ACRONYM DEFINITION

Table 1: Acronyms and Abbreviations (Continued)

mailto:productdocumentation@refinitiv.com
mailto:productdocumentation@refinitiv.com
https://developers.refinitiv.com

1 Introduction

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 3
EMAC380PETOO.240

1.7 Document Conventions

1.7.1 Typographic
• C structures, methods, in-line code snippets, and types are shown in orange, Lucida Console font.

• Parameters, filenames, tools, utilities, and directories are shown in Bold font.

• Document titles and variable values are shown in italics.

• When initially introduced, concepts are shown in Bold, Italics.

• Longer code examples (one or more lines of code) are show in Lucida Console font against an orange background. Comments in
the code are in green font. For example:

/* decode contents into the filter list structure */

if ((retVal = rsslDecodeFilterList(&decIter, &filterList)) >= RSSL_RET_SUCCESS)

{

/* create single filter entry and reuse while decoding each entry */

RsslFilterEntry filterEntry = RSSL_INIT_FILTER_ENTRY;

1 Introduction

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 4
EMAC380PETOO.240

1.7.2 Diagrams
Diagrams that depict a component in a performance scenario use the following format. The grey box represents one physical machine,
whereas blue or white boxes represent processes running on that machine.

Figure 1. Running Performance Example and Host Notation

Diagrams that depict the interaction between components on a network use the following notation:

Figure 2. Network Diagram Notation

2 Open Source Performance Tool Suite Overview

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 5
EMAC380PETOO.240

2 Open Source Performance Tool Suite Overview

2.1 Overview

The general idea behind the Open Source Performance Tool Suite is to provide a consistent set of platform test applications that look and
behave consistently across the Refinitiv Real-Time APIs. The tool suite covers the various Open Message Model-based API products and
allows Refinitiv’s internal and external clients to compare latency and throughput trade-offs of the various APIs and their differing functionality
sets.

Refinitiv Real-Time Distribution System also offers the tools testclient and testserver for performance testing, focusing on throughput,
latency, and capacity of Refinitiv Real-Time Distribution System components. The tool suite focuses on what can be done with each API and
is meant to compliment other platform tools.

All tools in the suite are provided as buildable open-source and demonstrate best practice and coding for performance with their respective
APIs. Future releases of API products will expand on these tests to include other areas of functionality (e.g., batch requesting, etc.). Clients
can run these tools to determine performance results for their own environments, recreate Refinitiv-released performance numbers
generated using these tools, and modify the open source to tune and tweak applications to best match their end-to-end needs.

These performance tools can generate reports comparing performance across all API products.

2 Open Source Performance Tool Suite Overview

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 6
EMAC380PETOO.240

2.2 Enterprise Message API Performance Tool Suite

The Enterprise Message API C++-based suite consists of an Open Message Model consumer, Open Message Model interactive provider,
and Open Message Model non-interactive provider. These applications showcase optimal Open Message Model content consumption and
providing within the Refinitiv Real-Time Distribution System. Additionally, the Enterprise Message API provides a transport-only performance
example which you can use to measure the performance of the Enterprise Message API transport handling opaque, non-Open Message
Model content. Source code is provided for all performance tool examples, so you can determine how functionality is coded and modify
applications to suit your specific needs.

Because applications from the Refinitiv Real-Time APIs are fully compatible and use similar methodologies, you can run them stand-alone
within an API or mix them (e.g., a provider from Enterprise Message API and a consumer from the Robust Foundation API).1

Figure 3. Three Connection Options for the Open Message Model-based Performance Tools

In a typical Open Message Model configuration, latency through the system is measured either one-way from a provider to consumer, or
round-trip from a consumer, through the system, and back.2 Latency information is encoded into a configurable number of update messages
which are then distributed over the course of each second. The consumer receives update messages, and if the messages contain latency
information, the consumer decodes them and measures the relative time taken to receive and process the message and its payload.

Figure 4.

1. Tools from the Robust Foundation API C++ and Robust Foundation API Java APIs must be obtained from their respective distribution packages.
2. Without a microsecond-resolution synchronization of clocks across machines, the one-way measurement implies that the provider and consumer
applications run on the same machine.

2 Open Source Performance Tool Suite Overview

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 7
EMAC380PETOO.240

2.3 Package Contents

Performance examples are distributed as buildable source code with the Enterprise Message API package.

Figure 5. Directory Structure of the Performance Tools

Each example is distributed in its own directory.

Libxml2, an open source XML-parsing library, is also distributed along with the tools. Each example project is configured to build Libxml2 as
a dependent library.

The PerfTools/common directory includes two .xml files:

• 350k.xml: The list of 350,000 items loaded by the consumer (of content published by the non-interactive provider).

• MsgFile.xml: The default set of OMM messages.

For more information about examples and their operations, readers can refer to the appropriate application sections in this document.
Readers can also refer to the readme files and comments included in source.

2 Open Source Performance Tool Suite Overview

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 8
EMAC380PETOO.240

2.3.1 Building
On Linux, use make or gmake with the included makefile to build the examples.

On Windows, open the appropriate project in Visual Studio.

2.3.2 Running
On Linux, once built, change to the target directory. The makefile will have linked the necessary support files (350k.xml, MsgData.xml,
RDMFieldDictionary, and enumtype.def) to the target directory.

On Windows, after the build process finishes, to run the tool, copy the above support files to the target directory.

2.4 What Is Measured and Reported

2.4.1 Latency
Each performance tool embeds timestamp information in its messages’ payloads. The tool uses these timestamps to determine the overall
time taken to send and process a message and its payload through the API and, where applicable, the Refinitiv Real-Time Distribution
System. To ensure that the measurement captures end-to-end latency through the system, the timestamp is taken from the start of the
sender’s message and payload encoding, and is compared to the time at which the receiver completes its decoding of the message and
payload.

When measuring performance, it is important to consider whether or not a particular component acts as a bottleneck on the system.
Enterprise Message API applications and Refinitiv Real-Time Distribution System components provide higher throughput and lower latency
than Robust Foundation API-based applications. In general, Refinitiv recommends that you use a Enterprise Message API C performance
tool to drive and calculate the performance of other non-Enterprise Message API C-based performance tools. For example, if you want to
test the performance of the consumer, use the Enterprise Message API C interactive or non-interactive provider to drive the publishing rather
than a providing application.

2.4.2 Throughput and Payload

These tools allow you to control the rate at which messages are sent as well as the content in each message. This allows you to measure
throughput and latency using various rates and content, tailored to your specific needs.

2.4.3 Image Retrieval Time

The Consumer tool measures the overall time taken to receive a full set of images for items requested through the system. This time is
measured from the start of the first request to the reception of the final expected image.

2.4.4 CPU & Memory Usage
Performance tools record a periodic sampling of CPU and Memory usage. This allows for consistent monitoring of resource use and can be
used to determine the impact of various features and application modifications.

The CPU and Memory Usage calculations represent the process as a whole, and are not normalized to the number of CPU cores nor
running threads. All threads in each tool contribute to the overall execution time; it is possible for the reported CPU usage to be greater than
100% if the application runs multiple busy threads.

2.4.4.1 CPU Usage Calculation
CPU Usage is calculated by periodically querying the OS for applications’ “busy” and “overall” times. The difference from the previous value
is used to calculate an average CPU usage for each interval and presented as a percentage:

2 Open Source Performance Tool Suite Overview

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 9
EMAC380PETOO.240

2.4.4.2 Memory Usage Calculation
Memory Usage is calculated using the "Resident Set Size," as provided by the respective operating system (OS). This measures the
memory (in RAM) in use by the application.

2.5 Recorded Results and Output

The tools record their test results in the following files:

• Summary File

• Statistics File

• Latency File

2.5.1 Summary File

Each tool records the run’s summary to a single file, including:

• The run’s configuration

• Overall run results

If you use multiple threads, the file includes results for each thread as well as across all threads. For configuration details, refer to the chapter
specific to the application that you use.

An example of recorded summary content for EmaCppConsPerf includes the average latency, update rate, and CPU/memory usage for the
application’s run time.

This summary information is output both to a file and to the console.

2.5.2 Statistics File

Each tool periodically records statistics relevant to that tool. For example, EmaCppConsPerf records:

• Latency statistics for updates (and, when so configured, posted content)

• Number of request messages sent and refresh messages received

• Number of update messages received

• Number of generic messages sent and received

• Latency statistics for generic messages (when so configured)

Each tool records these statistics on a per-thread basis. If the tool is configured to use multiple threads, the tool generates a file for each
thread. For configuration details, refer to the chapter specific to the application that you use.

Each tool can configure statistics recording via the following options:

• writeStatsInterval: The interval (from 1 to n, in seconds) at which timed statistics are written to files and the console.

• noDisplayStats: Prevents writing periodic stats to console.

2.5.3 Latency File
You can configure EmaCppConsPerf to record each individual latency measurement to a file. This is useful for creating plot or distribution
graphs, ensuring that recorded latencies are consistent, and for troubleshooting purposes.

These latencies are recorded on a per-thread basis. If the tool is configured to use multiple threads, a file is generated for each thread.

For further details on configuring this behavior, refer to the chapter specific to the application that you use.

3 Latency Measurement Details

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 10
EMAC380PETOO.240

3 Latency Measurement Details

3.1 Time-slicing

All applications follow a similar model for controlling time: time is divided into small intervals, referred to as “ticks.” During a run, each
application has a main loop that runs an iteration once per tick. In this loop, the application performs some periodic action, and then waits
until the next tick before starting the loop again.

For example, an application might observe the following loop:

1. Send out a burst of messages.

2. Wait until the time of the next tick. If network notification indicates that any connections have messages available, read them and
continue waiting.

Applications can configure this rate using their respective -tickRate option. This determines how many ticks occur per second. For
example, if you set the tick rate to 100, ticks occur at 10-millisecond intervals.

Applications adjust the message rate to fit the tick rate. For example, if an application wants to send 100,000 messages per second with a
tick rate of 100 ticks per second, the application will send 1,000 messages per tick. Adjusting the tick rate affects the smoothness of
message traffic by defining the amount of time between bursts:

Figure 6. Time Slicing Algorithm

Depending on the tool, spare time in the tick might be used to perform other actions. For example, after EmaCppIProvPerf or
EmaCppNIProvPerf sends an update burst, the remaining time is used to send outstanding refreshes:

Figure 7. Refresh Publishing Algorithm

Applications always set tick times at fixed intervals as they progress, regardless of what the application does during the interval. For
example, if the tick rate is 100 (i.e., 10 ms intervals), and the time of the previous tick was 40ms, then the times of the next ticks are 50 ms,
60 ms, etc... This helps maintain constant overall messaging rates: any irregularities in the timing of the current tick are corrected in
subsequent ticks.

NOTE: -tickRate does not affect the Round Trip Time feature.

up
da

te

up
da

te
up

da
te

up
da

te
up

da
te

up
da

te

up
da

te
up

da
te

up
da

te
up

da
te

up
da

te
re

fre
sh

re
fre

sh
up

da
te

up
da

te
up

da
te

up
da

te
up

da
te

re
fre

sh
re

fre
sh

re
fre

sh
up

da
te

up
da

te
up

da
te

up
da

te
up

da
te

re
fre

sh
re

fre
sh

up
da

te
up

da
te

up
da

te
up

da
te

up
da

te

0ms0ms ticktick ticktick ticktick

TimeTime

ticktick

startup state steady state

3 Latency Measurement Details

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 11
EMAC380PETOO.240

3.2 Latency

Latency is measured using timestamps embedded in the messages sent by each application. The receiving application compares this
timestamp against the current time to determine the latency.

Each tool sends messages in bursts. To send timestamps, a message is randomly chosen from the message burst and the timestamp is
embedded. When this message is received, the receiving application compares it to the current time to determine the latency.

Figure 8. Latency Reuters Instrument Codes within a Tick

Timestamps are high-resolution and non-decreasing. Because the source of this time varies across platforms and might not be synchronized
between multiple machines, update and generic message latency measurements require that the provider and consumer run on the same
machine. Posting latency measurements do not require this, as EmaCppConsPerf generates both sending and receiving timestamps.

Figure 9. Timing Diagram for Latency Measurements

The standard latency measurement is initiated by the provider, which encodes a starting time into an update. This timestamp is included as a
piece of data in the payload using a pre-determined latency Field IDentifier. On the consumer side, the application processes incoming
updates and generic messages, decodes the payload, and looks for updates or generic messages which include the latency Field IDentifier
(known as latency updates). After decoding a latency update or generic message, the consumer takes a second timestamp and compares
the two, outputting the difference as the measured latency for that particular update or generic message.

NOTE: Open Message Model performance tool timestamp information contains the number of microseconds since an epoch.a

a. Windows uses QueryPerformanceCounter(), Linux uses clock_gettime() with the monotonic clock.

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 12
EMAC380PETOO.240

4 Consumer Performance Tool

4.1 Overview

A typical Open Message Model consumer application requests content and processes responses to those requests. Thus, the performance
consumer makes a large, configurable number of item requests and then processes refresh and update content corresponding to those
requests. While processing, the performance consumer decodes all content and collects statistics regarding the count and latency of
received messages.

The EmaCppConsPerf implements an Open Message Model consumer using the Enterprise Message API C++ Edition. It connects to a
provider (such as EmaCppIProvPerf or Refinitiv Real-Time Distribution System), requests items, and processes the refresh and update
messages it receives, calculating statistics such as update rate and latency. Additionally, the consumer can send post messages through the
system at a configured rate, measuring the round-trip latency of posted content.

At startup, the consumer performs some administrative tasks, such as logging into the system, obtaining a source directory, and maybe
requesting a dictionary. After the consumer is satisfied that the correct service is available and that the provider is accepting requests, the
consumer begins requesting data. EmaCppConsPerf uses Enterprise Message API to complete its start-up tasks. For more information,
refer to the Enterprise Message API Developers Guide.

4.2 Threading and Scaling

The Enterprise Message API is designed to allow calls from multiple threads, such that applications can scale their work across multiple
cores. Applications can leverage this feature by creating multiple threads to handle multiple connections through the Enterprise Message
API.

Configure EmaCppConsPerf for multiple threads using the -threads command-line option. When multiple threads are configured, each
thread opens its own connection to the provider. EmaCppConsPerf divides its list of items among the threads (you can use the command
line option, -commonItemCount, to request the same type and number of items on all connections).

The main thread monitors the other threads and collects and reports statistics from them. Additionally, EmaCppConsPerf configures the
Enterprise Message API to create an internal thread to dispatch received messages. You can set EmaCppConsPerf to not run the second
thread inside the Enterprise Message API using -useUserDispatch command line option.

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 13
EMAC380PETOO.240

4.2.1 Consumer Lifecycle
The lifecycle of EmaCppConsPerf is divided into the following sections:

Figure 10. EmaCppConsPerf Lifecycle

1. Application and Enterprise Message API Initialization.

EmaCppConsPerf loads its configuration, initializes the Enterprise Message API, loads its item list using the specified file, and starts the
thread(s) which connect to the provider to perform the test. The Enterprise Message API is configured by using EmaConfig.xml

• The main thread periodically collects and writes statistics from the connection thread(s) until the test is over. All subsequent steps
are performed by each thread.

• Connection: the connection thread connects to the provider. If the connection fails, it continually attempts to reconnect until the
connection succeeds. When the connection succeeds, the test begins and any subsequent disconnection ends the test.

• Login: the connection thread leverages an Enterprise Message API consumer to provide its login requests and waits for the
provider’s response.

• Directory: the connection thread opens a directory stream and searches for the configured service name.

• Startup state: when the service is available, the “startup” phase of the performance measurement begins. During this phase, the
connection thread continually performs the following actions:

- Sends bursts of requests, until all desired items have been requested.
- Processes refresh, update, and generic message traffic from the provider.

The “startup” phase continues until all items receive a refresh containing an Open/OK state. All latency statistics recorded up to this point
are reported as “startup” statistics.

2. Steady state.

The connection thread continually performs the following actions:

• If configured for posting, the thread sends a burst of post messages.

• Processes updates from the provider.

• If configured to do so, sends a burst of generic messages.

The “steady state” phase continues for the period of time specified in the command line. Latency statistics recorded during this phase are
reported as “steady state” statistics.

3. Application shutdown and cleanup.

The connection thread disconnects and stops. The main thread collects all remaining information from the connection threads, cleans
them up, and writes the final summary statistics. The main thread then uninitializes the Enterprise Message API, any remaining
resources, and exits.

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 14
EMAC380PETOO.240

4.2.2 Application Flow Diagram

Figure 11. EmaCppConsPerf Application Flow

4.3 Latency Measurement

Provider applications encode the timestamp as part of their message payload. The initial timestamp is taken at the start of encoding, and
added as field TIM_TRK_1 (3902) in Update messages and TIM_TRK_3 (3904) in Generic messages. When this field is detected, the
EmaCppConsPerf gets the current time and computes the difference to measure latency.

When configured to do so via appropriate command line parameters, the Consumer application will encode timestamps as part of Generic
messages payload. The timestamp is taken at the start of encoding and stored in the field TIM_TRK_3 (3904). The Performance Provider
application can detect this field and calculate the latency by subtracting the received value from the current timestamp.

4.3.1 Consumer Latency

 Consumer Latency Measurement Sequence:
1. Read the message from the API (received via the underlying transport).

2. Decode the message.

3. Check whether the payload contains latency information, if so:

• Get the current time (t2).

• Calculate the difference between timestamps.

• Store the result as part of the recorded output information.

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 15
EMAC380PETOO.240

4.3.2 Posting Latency
You can configure EmaCppConsPerf to send on-stream posts in which case the consumer periodically sends bursts of post messages for
specified items in the item list file. You can also configure the tool to include latency information in its posts. When configured in this manner,
EmaCppConsPerf adds latency information to random post messages. When the posted content returns on the stream, EmaCppConsPerf
decodes the timestamp and measures the difference to determine posting latency.

 Posting Latency Measurement Sequence:
1. Get the current time (t1).

2. Obtain an output buffer using rsslGetBuffer().

3. Encode the message, including the time (t1).

4. Pass the message to the API, which then passes it to the underlying transport.

5. When processing received content, check to see whether the payload contains latency information, if so:

• Get the current time (t2).

• Calculate the difference between timestamps.

• Store the result in the recorded output information.

The time at the start of encoding is encoded as a timestamp in the payload as field TIM_TRK_2 (3903). When the payload from the post
returns from the platform, the consumer compares the timestamp to the current time to determine the posting latency.

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 16
EMAC380PETOO.240

4.4 EmaCppConsPerf Configuration Options

EmaCppConsPerf uses EmaConfig.xml configuration file to setup an EMA consumer and set of command line options to configure specific
behavior of performance tool.

EmaConfig.xml must have Consumer section in the Consumer group and appropriate Channel section in Channel group for correct
configuration of the EMA consumer. For details on how to setup Consumer and Channel sections, refer to the Enterprise Message API
Configuration Guide. For examples of configuration, refer to Section 4.5.1.

EmaCppConsPerf uses the command line option -consumerName to specify name of Consumer section.

The following table describes available configuration options.

COMMAND-LINE OPTION DEFAULT DESCRIPTION

-apiThreads -1 Specifies the CPU core(s) to which the internal EMA API thread(s) will be
bound to dispatch received messages. The parameter is used when the
application configures EMA to work in API dispatch mode (see
-useUserDispatch). EmaCppConsPerf does not bind the internal EMA
API thread(s) to specific CPU core(s) by default. For details on the internal
EMA API thread, refer to the Enterprise Message API Developers Guide, 2.4
Product Architecture.
Specifies the CPU physical mapping in format P:X C:Y T:Z, logical core ID
(number), or no binding (-1).
Specifies the physical mapping which binds the thread to the specified physical
processor, core, and thread (P:X C:Y T:Z). This syntax specifies a physical
CPU to bind to. P refers to processor, C refers to core, and T refers to thread.
If T is not specified (or T:#), the thread will be bound to all threads on the
specified processor. If C is not specified (or C:#), the thread will be bound to all
cores and threads on that processor.
Specifying only one number causes a logical core ID to be bound instead of a
physical one.
-1 means no bind.
For example, when specified as "1,3", the internal EMA API threads will be
bound to logical CPU cores 1 and 3.
The number of threads set by the parameter -threads should be matched.
For details on rsslBindThread, refer to the Transport API C++ Edition
Developers Guide.

-commonItemCount 0 If multiple consumer threads are created (see -threads), each thread
normally requests a unique set of items on its connection. This option specifies
the number of common items to be requested by all connections.

-consumerName Perf_Consumer_ Specifies the name of consumer in XML configuration file
(EmaConfig.xml).Configures the name of the Consumer component in the
configuration file (EmaConfig.xml) that will be used to configure the
connection.

-delaySteadyStateCalc 0 Configures the time duration (in milliseconds), the consumer needs to wait to
calculate the latency after receiving the last expected image.

-genericMsgLatencyRate 0 Controls the number of generic messages sent per second that contain latency
information. This must be less than or equal to the total generic message rate
(see -genericMsgRate).

-genericMsgRate 0 Controls the number of generic messages sent per second. This cannot be
less than the tick rate, unless it is zero (see -tickRate).

-itemCount 100000 Sets the total number of items requested by the consumer.

Table 2: EmaCppConsPerf Configuration Options

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 17
EMAC380PETOO.240

-itemFile 350k.xml Configures the name of the item list file.

-latencyFile None Sets the name of the log file in which EmaCppConsPerf logs the latency
retrieved from individual latency updates, generic messages, and posts. If a
name is not specified, logging is disabled.

-mainThread -1 Specifies the CPU core to bind the main application thread that controls
working threads, collects and prints statistics. By default, EmaCppConsPerf
does not bind the main thread to specific CPU core.
Specifies the CPU physical mapping in format P:X C:Y T:Z, logical core ID
(number), or no binding (-1).
Specifies the physical mapping which binds the thread to the specified physical
processor, core, and thread (P:X C:Y T:Z). This syntax specifies a physical
CPU to bind to. P refers to processor, C refers to core, and T refers to thread.
If T is not specified (or T:#), the thread will be bound to all threads on the
specified processor. If C is not specified (or C:#), the thread will be bound to all
cores and threads on that processor.
Specifying only one number causes a logical core ID to be bound instead of a
physical one. -1 means no bind.
For example, when specified "3", the main thread will be bound to logical CPU
core 3.
For details on rsslBindThread, refer to the Transport API C++ Edition
Developers Guide.

-msgFile MsgData.xml Configures the name of the file used by the consumer to determine the
makeup of message payloads. For more details on input file information, refer
to Section 8.1.

-noDisplayStats (no argument) Turns off printing statistics to the screen.

-postingLatencyRate 0 Controls the number of posts sent per second that contain latency information.
This must be less than or equal to the total post message rate (see
-postingRate).

-postingRate 0 Configures the consumer for posting. Sets the number of posting messages
the consumer sends, per second. This cannot be less than the tick rate, unless
it is zero (see -tickRate).

-requestRate 35000 Sets the number of item requests sent (per second).

-serviceName DIRECT_FEED Configures the name of the service used by the consumer to request items.
The consumer begins requesting items whenever this service is found and
appears ready.

-snapshot (no argument) Opens all items as snapshots, even if not specified in the item list file, and exits
upon receiving all the solicited images. This is different from setting
-steadyStateTime to 0 in that the requests are specifically made without
the "STREAMING" RequestMsg flag.

-spTLSv1.2 (no argument) Specifies that TLSv1.2 can be used for an OpenSSL-based encrypted
connection.

-spTLSv1.3 (no argument) Specifies that TLSv1.3 can be used for an OpenSSL-based encrypted
connection.

-statsFile ConsStats Configures the base name that the consumer uses when writing its test
statistics.

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 2: EmaCppConsPerf Configuration Options (Continued)

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 18
EMAC380PETOO.240

-steadyStateTime 300 Configures how long (in seconds) the consumer continues to run the test after
receiving the last expected image.
steadyStateTime has a second function: after beginning the test, if the
consumer does not receive all expected images within this segment of time,
the consumer times out. In this case, it exits and indicates that it did not reach
steady state.

-summaryFile ConsSummary.out Configures the name of the file to which the consumer writes its test summary.

-threads None The value of "-threads" serves two purposes: It defines the number of
parallel threads/connections to be created AND where to bind each thread. For
example, if an application wants to horizontally scale and open two
connections, there should be two values for -threads: 0,1 OR P:0 C:0 T:0,
P:0 C:0 T:1 OR -1, -1. The number of values specified indicates the number of
threads to start (comma separated). The thread binding may be formatted or
specified as follows: physical binding (P:X C:Y T:Z) OR logical binding (X) or -1
(no binding).
Physical binding: specify physical CPU to bind to: P refers to processor, C
refers to core, and T refers to thread. If T is not specified (or T:#), the thread
will be bound to all threads on the specified processor. If C is not specified (or
C:#), the thread will be bound to all cores and threads on that processor.
Logical Binding: For example, "1,3" creates two threads to establish
connections with the provider, respectively bound to logical CPU cores 1 and
3.
In conjunction with -threads, one may specify -apiThreads,
-workerThreads.
For details on rsslBindThread, refer to the Transport API C++ Edition
Developers Guide.

-tickRate 1000 Sets the number of 'ticks' per second (the number of times per second the
main loop of the consumer occurs). Adjusting the tick rate changes the size of
request/post bursts; a higher tick rate results in smaller individual bursts,
creating smoother traffic.

-uname None Sets the user name for the login request. When unspecified, the system login
name is used.

-useServiceId 0 Configures the consumer for adding the field "serviceId" in the Request
message. For details on Request message, refer to Enterprise Message API
Refinitiv Domain Model Usage Guide.

-useUserDispatch 0
Configures how EmaCppConsPerf and the Enterprise Message API dispatch
received messages. When you select 0 (API dispatch model) then
EmaCppConsPerf configures the Enterprise Message API to create an
additional internal thread to dispatch received messages. When you select 1
(user dispatch model) the Enterprise Message API does not run a second
thread and the EmaCppConsPerf is responsible for dispatching all received
messages. By default, EmaCppConsPerf uses the API dispatch model.
For details on how an Enterprise Message API application dispatches received
messages, refer to the Enterprise Message API Developers Guide.

-websocket None Configures the consumer for using websocket connection with specified
protocol: "rssl.json.v2" or "rssl.rwf".

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 2: EmaCppConsPerf Configuration Options (Continued)

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 19
EMAC380PETOO.240

-workerThreads None Specifies the CPU core(s) to which the Reactor worker thread(s) will be bound.
EmaCppConsPerf does not bind the Reactor worker thread(s) to specific CPU
core(s) by default. For details on Value Added Components, refer to the
Transport API Value Added Components Developers Guide.
Specifies the CPU physical mapping in format P:X C:Y T:Z, logical core ID
(number), or no binding (-1).
Specifies the physical mapping which binds the thread to the specified physical
processor, core, and thread (P:X C:Y T:Z). This syntax specifies a physical
CPU to bind to. P refers to processor, C refers to core, and T refers to thread.
If T is not specified (or T:#), the thread will be bound to all threads on the
specified processor. If C is not specified (or C:#), the thread will be bound to all
cores and threads on that processor.
Specifying only one number causes a logical core ID to be bound instead of a
physical one.
-1 means no bind.
For example, “1,3” specifies two Reactor worker threads, respectively bound to
logical CPU cores 1 and 3.
The number of threads set by the parameter -threads should be matched.
For details on rsslBindThread, refer to the Transport API C++ Edition
Developers Guide.

-writeStatsInterval 5 Configures the frequency (in seconds) at which statistics are printed to the
screen and statistics file.

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 2: EmaCppConsPerf Configuration Options (Continued)

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 20
EMAC380PETOO.240

4.5 Input

EmaCppIProvPerf requires the following files:

• Dictionary files to encode/validate fields in the message data. RDMFieldDictionary and enumtype.def are provided with the package.

• An XML file that describes refresh messages, update messages and generic messages. The package includes a default file (350k.xml).

For more details on input file information, refer to Chapter 8, Input File Details.

4.5.1 EmaConfig.xml Examples
EmaConfig.xml must have a Consumer section in the Consumer group and appropriate Channel section in Channel group for correct
configuration of the Enterprise Message API consumer.

For details on how to setup Consumer and Channel sections, refer to the Enterprise Message API Configuration Guide.

4.5.1.1 Consumer Section
When creating a consumer section, you must include the Name and Channel fields. For details on Name and Channel, refer to the
Enterprise Message API Configuration Guide.

Example 1: Consumer Section Example

4.5.1.2 Channel Section
When creating a channel section, you must include the Name and ChannelType fields. For details on Name and ChannelType, refer to the
Enterprise Message API Configuration Guide.

• To connect to the provider for TCP and WebSocket connections, you must specify Host and Port fields.

• To connect to the provider for encrypted connection, you must specify Host, Port, and OpenSSLCAStore fields.

<Consumer>

<Name value="Perf_Consumer_1"/>

<Channel value="Perf_Channel_1"/>

<Logger value="Logger_1"/>

<Dictionary value="Dictionary_1"/>

<MaxDispatchCountApiThread value="6500"/>

<MaxDispatchCountUserThread value="6500"/>

</Consumer>

<Channel>

<Name value="Perf_Channel_1"/>

<ChannelType value="ChannelType::RSSL_SOCKET"/>

<CompressionType value="CompressionType::None"/>

<GuaranteedOutputBuffers value="5000"/>

<NumInputBuffers value="2048"/>

<ConnectionPingTimeout value="30000"/>

<TcpNodelay value="1"/>

<DirectWrite value="0"/>

<Host value="localhost"/>

<Port value="14002"/>

</Channel>

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 21
EMAC380PETOO.240

Example 2: Channel Section Example of TCP Connection Type

Example 3: Channel Section Example of Encrypted Connection Type

4.6 Output

EmaCppConsPerf records statistics during a test such as:

• Item requests sent and images received

• Image retrieval time

• The update rate

• The post message rate

• The generic message rate

• Latency statistics

• CPU and memory usage

For more details on output file information, refer to Chapter 9, Output File Details.

4.6.1 EmaCppConsPerf Summary File Sample

<Channel>

<Name value="Perf_Channel_Encr_1"/>

<ChannelType value="ChannelType::RSSL_ENCRYPTED"/>

<EncryptedProtocolType value="EncryptedProtocolType::RSSL_SOCKET"/>

<CompressionType value="CompressionType::None"/>

<GuaranteedOutputBuffers value="5000"/>

<NumInputBuffers value="2048"/>

<ConnectionPingTimeout value="30000"/>

<TcpNodelay value="1"/>

<Host value="localhost"/>

<Port value="14002"/>

<OpenSSLCAStore value="./RootCA.crt"/>

</Channel>

--- TEST INPUTS ---

Steady State Time: 300

Delay Steady State Time: 0

Service: DIRECT_FEED

useUserDispatch: 0

mainThread: -1

Thread List: -1

ApiThread List: -1

Username: (use system login name)

Item Count: 100000

Common Item Count: 0

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 22
EMAC380PETOO.240

Request Rate: 35000

Request Snapshots: No

Posting Rate: 0

Latency Posting Rate: 0

Generic Msg Rate: 0

Latency Generic Msg Rate: 0

Item File: 350k.xml

Data File: MsgData.xml

Summary File: ConsSummary.out

Stats File: ConsStats

Latency Log File: latencyLog

Tick Rate: 1000

--- OVERALL SUMMARY ---

Startup State Statistics:

Sampling duration (sec): 4.278

Latency avg (usec): 139.2

Latency std dev (usec): 53.5

Latency max (usec): 229.0

Latency min (usec): 58.0

Avg update rate: 257

Steady State Statistics:

Sampling duration (sec): 41.638

Latency avg (usec): 81.8

Latency std dev (usec): 26.3

Latency max (usec): 380.0

Latency min (usec): 42.0

Avg update rate: 46737

Overall Statistics:

Sampling duration (sec): 45.916

Latency avg (usec): 81.8

Latency std dev (usec): 26.4

Latency max (usec): 380.0

Latency min (usec): 42.0

No GenMsg latency information was received.

CPU/Memory samples: 9

CPU Usage max (%): 97.49

CPU Usage min (%): 29.76

CPU Usage avg (%): 40.66

Memory Usage max (MB): 338.33

Memory Usage min (MB): 338.21

Memory Usage avg (MB): 338.31

Test Statistics:

Requests sent: 100000

Refreshes received: 100000

Updates received: 1947134

Image retrieval time (sec): 4.278

Avg image rate: 23377

Avg update rate: 42409

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 23
EMAC380PETOO.240

Code Example 4: EmaCppConsPerf Summary File Sample

4.6.2 EmaCppConsPerf Statistics File Sample

Code Example 5: EmaCppConsPerf Statistics File Sample

4.6.3 EmaCppConsPerf Latency File Sample

UTC, Latency updates, Latency avg (usec), Latency std dev (usec), Latency max (usec), Latency min (usec),

Images, Update rate (msg/sec), Posting Latency updates, Posting Latency avg (usec), Posting Latency

std dev (usec), Posting Latency max (usec), Posting Latency min (usec), GenMsgs sent, GenMsgs

received, GenMsg Latencies sent, GenMsg latencies received, GenMsg Latency avg (usec), GenMsg

Latency std dev (usec), GenMsg Latency max (usec), GenMsg Latency min (usec), CPU usage (%), Memory

(MB)

2021-06-02 13:07:27, 189, 81.5, 35.6, 230.0, 51.0, 100000, 3777, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0,

0.0, 0.0, 0.0, 97.49, 338.21

2021-06-02 13:07:32, 2399, 81.7, 26.3, 258.0, 52.0, 0, 48034, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0,

0.0, 0.0, 33.32, 338.30

2021-06-02 13:07:37, 2362, 81.2, 25.0, 224.0, 42.0, 0, 47239, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0,

0.0, 0.0, 31.83, 338.30

2021-06-02 13:07:42, 2378, 80.5, 24.4, 255.0, 52.0, 0, 47566, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0,

0.0, 0.0, 34.31, 338.30

2021-06-02 13:07:47, 2372, 81.9, 25.5, 252.0, 51.0, 0, 47425, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0,

0.0, 0.0, 30.63, 338.30

2021-06-02 13:07:52, 2347, 82.2, 26.1, 292.0, 51.0, 0, 46970, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0,

0.0, 0.0, 34.64, 338.33

2021-06-02 13:07:58, 2387, 81.7, 26.8, 380.0, 52.0, 0, 47702, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0,

0.0, 0.0, 29.76, 338.33

2021-06-02 13:08:03, 2319, 84.3, 29.3, 263.0, 51.0, 0, 46387, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0,

0.0, 0.0, 36.86, 338.33

2021-06-02 13:08:08, 2366, 81.1, 26.3, 373.0, 52.0, 0, 47336, 0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0.0, 0.0,

0.0, 0.0, 37.11, 338.33

Message type, Send time, Receive time, Latency (usec)

Upd, 18873718238, 18873718467, 229

Upd, 18873722250, 18873722385, 135

Upd, 18873736516, 18873736631, 115

Upd, 18873748001, 18873748170, 169

Upd, 18873774757, 18873774824, 67

Upd, 18873816382, 18873816497, 115

Upd, 18873901823, 18873902021, 198

Upd, 18874110183, 18874110345, 162

Upd, 18874571156, 18874571334, 178

Upd, 18875361684, 18875361789, 105

Upd, 18876606790, 18876606848, 58

Upd, 18877995128, 18877995186, 58

4 Consumer Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 24
EMAC380PETOO.240

Code Example 6: EmaCppConsPerf Latency File Sample

4.6.4 EmaCppConsPerf Console Output Sample

Code Example 7: EmaCppConsPerf Console Output Sample

Upd, 18877995646, 18877995699, 53

Upd, 18877998936, 18877998991, 55

Upd, 18878001029, 18878001099, 70

005: Images: 100000, Posts: 0, UpdRate: 3777, CPU: 97.49%, Mem: 338.21MB

Latency(usec): Avg: 81.5 StdDev: 35.6 Max: 230 Min: 51, Msgs: 189

- Image retrieval time for 100000 images: 4.278s (23377 images/s)

010: Images: 0, Posts: 0, UpdRate: 48034, CPU: 33.32%, Mem: 338.30MB

Latency(usec): Avg: 81.7 StdDev: 26.3 Max: 258 Min: 52, Msgs: 2399

015: Images: 0, Posts: 0, UpdRate: 47239, CPU: 31.83%, Mem: 338.30MB

Latency(usec): Avg: 81.2 StdDev: 25.0 Max: 224 Min: 42, Msgs: 2362

020: Images: 0, Posts: 0, UpdRate: 47566, CPU: 34.31%, Mem: 338.30MB

Latency(usec): Avg: 80.5 StdDev: 24.4 Max: 255 Min: 52, Msgs: 2378

025: Images: 0, Posts: 0, UpdRate: 47425, CPU: 30.63%, Mem: 338.30MB

Latency(usec): Avg: 81.9 StdDev: 25.5 Max: 252 Min: 51, Msgs: 2372

030: Images: 0, Posts: 0, UpdRate: 46970, CPU: 34.64%, Mem: 338.33MB

Latency(usec): Avg: 82.2 StdDev: 26.1 Max: 292 Min: 51, Msgs: 2347

035: Images: 0, Posts: 0, UpdRate: 47702, CPU: 29.76%, Mem: 338.33MB

Latency(usec): Avg: 81.7 StdDev: 26.8 Max: 380 Min: 52, Msgs: 2387

5 Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 25
EMAC380PETOO.240

5 Interactive Provider Performance Tool

5.1 Overview

A typical interactive provider allows consuming applications, including Refinitiv Real-Time Distribution System, to connect. Once connected,
consumers log in and request content. The interactive provider will respond, providing requested content when possible and a status
indicating some type of failure when not possible. While a provider in a production environment might get its data from an external source or
by performing a calculation on some other data, the performance provider generates its data internally.

EmaCppIProvPerf implements an Open Message Model interactive provider using the Enterprise Message API. It starts a server which
allows Open Message Model consumers to connect (either directly or through Refinitiv Real-Time Distribution System), and provides
customizable refresh messages and update messages for requested items as well as generic messages.

EmaCppIProvPerf uses EmaConfig.xml file to configure the Enterprise Message API.

When a new connection is being established, the provider performs some administrative tasks, such as processing login messages,
handling directory requests, and (optionally) providing a dictionary. This application uses the Enterprise Message API that incorporates the
Value Add Reactor component from the Transport API to complete these tasks. For more information, refer to the Enterprise Message API
Developers Guide.

5.2 Threading and Scaling

The Enterprise Message API is designed to allow calls from multiple threads, such that applications can scale their work across multiple
cores by creating multiple threads to handle multiple connections through the Enterprise Message API.

EmaCppIProvPerf always creates at least one working thread. You can configure EmaCppIProvPerf for multiple threads by using the -
threads command-line option. When multiple threads are configured, consumer connections are balanced such that each thread receives
an equal number of connections. Note that one consumer establishes one connection.

The application working thread leverages an Enterprise Message API provider that is configured as an interactive provider. The provider is
implemented by the VA Reactor and runs the internal, VA Reactor logic. Additionally, EmaCppIProvPerf configures the Enterprise Message
API to create a second, internal thread to dispatch received messages. You can configure EmaCppIProvPerf to not run the second thread
inside the Enterprise Message API by using -useUserDispatch command-line option.

The main application thread monitors the other application level’s threads, collects and reports statistics from them.

5 Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 26
EMAC380PETOO.240

5.3 Provider Lifecycle

The lifecycle of EmaCppIProvPerf is divided into the following sections:

Figure 12. EmaCppIProvPerf Application Flow

1. Application and Enterprise Message API Initialization.

EmaCppIProvPerf loads its configuration, initializes the Enterprise Message API, loads its sample message data using specified files,
and starts one or more threads (as configured) to provide data to consumers. The Enterprise Message API is configured by using
EmaConfig.xml.

The main thread periodically collects and writes statistics from the connection thread(s) until the test is over.

2. Handle Login, and Item Requests; Provide Updates.

• Send a burst of updates for items currently open on existing connections.

• Send a burst of generic messages (if configured to do so).

• Send reflected post messages (if configured to do so).

• Use available spare time to provide images for items that need them.

• Use available spare time to read from the transport, processing any Login, Directory, or Item requests.

3. Shutdown and cleanup.

The provider thread stops. The main thread collects any remaining data from the connection threads, cleans them up, and writes the final
summary statistics. The main thread then cleans up the Enterprise Message API and remaining resources, and exits.

EmaCppIProvPerf should run long enough to allow connected consumers to complete their measurements.

5 Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 27
EMAC380PETOO.240

5.3.1 Application Flow Diagram
The following figure shows the flow of the EmaCppIProvPerf application.

Figure 13. EmaCppIProvPerf Application Flow

5 Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 28
EMAC380PETOO.240

5.4 Latency Measurement

EmaCppIProvPerf encodes the timestamp as part of its message payload. The timestamp is taken at the start of encoding and added as
field TIM_TRK_1 (3902) for Update message, field TIM_TRK_2 (3903) for Post message, and field TIM_TRK_3 (3904) for Generic
message. Latency is measured after ConsPerf completes decoding.

 Interactive Provider Latency Measurement Sequence:
1. Get the current time (t1).

2. Encode the message, including time t1.

3. Pass the message to the API, which passes it to the underlying transport.

4. The consuming application receives the timestamp in the payload and compares it against the current time to calculate latency.

5.5 EmaCppIProvPerf Configuration Options

EmaCppIProvPerf uses EmaConfig.xml configuration file to setup an EMA interactive provider and set of command line options to
configure specific behavior of performance tool.

EmaConfig.xml must have IProvider section in the Provider group and appropriate Server section in Server group for correct configuration
of the EMA interactive provider. For details on how to setup IProvider and Server sections, refer to the Enterprise Message API Configuration
Guide. For examples of configuration, refer to Section 5.6.1.

EmaCppIProvPerf uses the command line option -providerName to specify name of Provider section.

COMMAND-LINE OPTION DEFAULT DESCRIPTION

-apiThreads -1 Specifies the CPU core(s) to bind the internal EMA API thread(s) to dispatch received
messages. The parameter is used when the application configures EMA to work in
API dispatch mode (see -useUserDispatch). EmaCppIProvPerf does not bind
the internal EMA API thread(s) to specific CPU core(s) by default. For details on the
internal EMA API thread, refer to the Enterprise Message API Developers Guide, 2.4
Product Architecture.
Specifies the CPU physical mapping in format P:X C:Y T:Z, logical core ID (number),
or no binding (-1).
Specifies the physical mapping which binds the thread to the specified physical
processor, core, and thread (P:X C:Y T:Z). This syntax specifies a physical CPU to
bind to. P refers to processor, C refers to core, and T refers to thread. If T is not
specified (or T:#), the thread will be bound to all threads on the specified processor. If
C is not specified (or C:#), the thread will be bound to all cores and threads on that
processor.
Specifying only one number causes a logical core ID to be bound instead of a
physical one. -1 means no bind.
For example, when specified as "1,3", the internal EMA API threads will be bound to
logical CPU cores 1 and 3.
The number of threads set by the parameter -threads should be matched.
For details on rsslBindThread, refer to the Transport API C++ Edition Developers
Guide.

-genericMsgLatencyRate 0 Sets the number of generic messages sent (per second) that contain latency data.
This number must be less than or equal to the total generic message rate (see
-genericMsgRate). When you set the value to“all” then latency data is added to
each generic message.

Table 3: EmaCppIProvPerf Configuration Options

5 Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 29
EMAC380PETOO.240

-genericMsgRate 0 Sets the number of generic messages sent per second. This number cannot be less
than the tick rate unless it is zero(see -tickRate).

-latencyFile None Specifies the name of the log file in which EmaCppIProvPerf logs the latency
retrieved from individual latency updates, generic messages.
If a name is not specified, logging is disabled.

-latencyUpdateRate 10 Sets the number of updates sent per second containing latency information. This
number must be less than or equal to the total update rate (see -updateRate).

NOTE: When you set the value “all” then latency data is added to each update
message.

-mainThread -1 Specifies the CPU core to bind the main application thread that controls working
threads, collects and prints statistics. By default, EmaCppIProvPerf does not bind
the main thread to specific CPU core.
Specifies the CPU physical mapping in format P:X C:Y T:Z, logical core ID (number),
or no binding (-1).
Specifies the physical mapping which binds the thread to the specified physical
processor, core, and thread (P:X C:Y T:Z). This syntax specifies a physical CPU to
bind to. P refers to processor, C refers to core, and T refers to thread. If T is not
specified (or T:#), the thread will be bound to all threads on the specified processor. If
C is not specified (or C:#), the thread will be bound to all cores and threads on that
processor.
Specifying only one number causes a logical core ID to be bound instead of a
physical one. -1 means no bind.
For example, when specified "3", the main thread will be bound to logical CPU core
3.
For details on rsslBindThread, refer to the Transport API C++ Edition Developers
Guide.

-maxPackCount 1 Specifies maximum number of messages packed in a buffer (when count is greater
than 1, packing is enabled).

-measureEncode (no argument) Configures EmaCppIProvPerf to measure encoding time of messages. By default,
the measurement is not produced.

-measureDecode (no argument) Configures EmaCppIProvPerf to measure decoding time of messages. By default,
the measurement is not produced.

-msgFile MsgData.xml Specifies the file that the provider uses to determine message content. For more
details on input file information, refer to Section 8.1.

-nanoTime (no argument) Specifies the nanosecond precision for latency information instead of microsecond.

-noDisplayStats (no argument) Turns off printing statistics to the screen.

-packBufSize 6000 Sets size of buffer to use when message packing is enabled, i.e. maxPackCount >
1.

-providerName Perf_Provider_ Specifies the name of provider in XML configuration file (EmaConfig.xml).

-preEnc (no argument) Specifies pre-encoding for updates and generic messages. All the template
messages (see MsgData.xml) will be encoded before real sending. It decreases the
time required for message preparation. By default, EmaCppIProvPerf encodes
messages each time.

NOTE: Whenever a latency data is required, the messages that contain latency are
encoded (see -genericMsgLatencyRate, -latencyUpdateRate).

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 3: EmaCppIProvPerf Configuration Options (Continued)

5 Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 30
EMAC380PETOO.240

-runTime 360 Sets the length of time EmaCppIProvPerf runs (in seconds).

-statsFile ProvStats Specifies the base name used to write the provider’s test statistics.

-summaryFile ProvSummary.out Specifies the base file name used to write the provider’s test summary.

-threads None The value of "-threads" serves two purposes: it defines the number of parallel
threads/connections to be created AND where to bind each thread. For example, if
an application wants to horizontally scale and open two connections, there should be
two values for -threads: 0,1 OR P:0 C:0 T:0, P:0 C:0 T:1 OR -1, -1. The number of
values specified indicates the number of threads to start (comma separated). The
thread binding may be formatted or specified as follows: physical binding (P:X C:Y
T:Z) OR logical binding (X) or -1 (no binding).
Physical binding: specify physical CPU to bind to: P refers to processor, C refers to
core, and T refers to thread. If T is not specified (or T:#), the thread will be bound to
all threads on the specified processor. If C is not specified (or C:#), the thread will be
bound to all cores and threads on that processor.
Specifying only one number causes a logical core ID to be bound instead of a
physical one. -1 means no bind.
For example, when specified "1,3", it creates two threads to publish items
respectively, and they are bound to CPU cores 1 and 3.
In conjunction with -threads, one may specify -apiThreads and -
workerThreads.
For details on rsslBindThread, refer to the Transport API Developers Guide.

-tickRate 1000 Sets the number of “ticks” (cycles completed by the provider’s main loop) per second.
Adjusting the tick rate changes the size of update bursts: higher tick rates result in
smaller individual bursts, creating smoother traffic.

-updateRate 100000 Configures the number of updates sent per second, per connection.

NOTE: This cannot be less than the tick rate, unless it is zero (see -tickRate).

-useUserDispatch 0 Configures how EmaCppIProvPerf and Enterprise Message API dispatch received
messages. When you select 0 (API dispatch model) then EmaCppIProvPerf
configures the Enterprise Message API to create an additional internal thread to
dispatch received messages. When you select 1 (user dispatch model) the
Enterprise Message API does not run a second thread and the EmaCppIProvPerf is
responsible for dispatching all received messages. By default, EmaCppIProvPerf
uses the API dispatch model.
For details on how an Enterprise Message API application dispatches received
messages, refer to the Enterprise Message API Developers Guide.

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 3: EmaCppIProvPerf Configuration Options (Continued)

5 Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 31
EMAC380PETOO.240

5.6 Input Files

EmaCppIProvPerf requires the following files:

• Dictionary files to encode/validate fields in the message data. RDMFieldDictionary and enumtype.def are provided with the package.

• An XML file that describes refresh messages, update messages and generic messages. The package includes a default file (350k.xml).

For more details on input file information, refer to Chapter 8, Input File Details.

5.6.1 EmaConfig.xml Examples
EmaConfig.xml must have IProvider section in the Provider group and appropriate Server section in Server group for correct configuration
of the Enterprise Message API interactive provider.

For details on how to setup IProvider and Server sections, refer to the Enterprise Message API Configuration Guide.

5.6.1.1 IProvider Section
When creating an IProvider section, you must include the Name and Server fields. For details on Name and Server fields, refer to the
Enterprise Message API Configuration Guide.

-workerThreads <none> Sets the list of CPUs bound to Reactor worker threads. By default,
EmaCppIProvPerf does not bind the Reactor worker thread(s) to specific CPU
core(s). For details on Value Added Components, refer to the Transport API Value
Added Components Developers Guide.
Specifies the CPU physical mapping in format P:X C:Y T:Z, logical core ID (number),
or no binding (-1).
Specifies the physical mapping which binds the thread to the specified physical
processor, core, and thread (P:X C:Y T:Z). This syntax specifies a physical CPU to
bind to. P refers to processor, C refers to core, and T refers to thread. If T is not
specified (or T:#), the thread will be bound to all threads on the specified processor. If
C is not specified (or C:#), the thread will be bound to all cores and threads on that
processor.
Specifying only one number causes a logical core ID to be bound instead of a
physical one. -1 means no bind.
For example, “1,3” specifies two Reactor worker threads, respectively bound to
logical CPU cores 1 and 3.
The number of threads set by the -threads parameter should be matched.
For details on rsslBindThread, refer to the Transport API Developers Guide.

-writeStatsInterval 5 Sets how often statistics are printed to the screen and statistics file (in seconds).

<IProvider>

<Name value="Perf_Provider"/>

<Server value="Perf_Server_1"/>

<Directory value="Directory_2"/>

<Logger value="Logger_1"/>

<ItemCountHint value="10000"/>

<ServiceCountHint value="10000" />

<CatchUnhandledException value="0" />

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 3: EmaCppIProvPerf Configuration Options (Continued)

5 Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 32
EMAC380PETOO.240

Example 8: IProvider Section Example

<MaxDispatchCountApiThread value="500" />

<MaxDispatchCountUserThread value="500" />

<RefreshFirstRequired value="1" />

</IProvider>

5 Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 33
EMAC380PETOO.240

5.6.1.2 The Server Section
When creating an Server section, you must include the Name and ServerType fields. For details on Name and ServerType fields, refer to
the Enterprise Message API Configuration Guide.

• You can use WsProtocols parameter when ServerType is set to RSSL_WEBSOCKET.

• You can use the following parameters when ServerType is set to RSSL_ENCRYPTED: ServerCert and ServerPrivateKey.

Example 9: Server Section Example of TCP Connection Type

Example 10: Server Section Example for using WebSocket Protocol

<Server>

<Name value="Perf_Server_1"/>

<ServerType value="ServerType::RSSL_SOCKET"/>

<CompressionType value="CompressionType::None"/>

<GuaranteedOutputBuffers value="50000"/>

<ConnectionPingTimeout value="30000"/>

<TcpNodelay value="1"/>

<Port value="14002"/>

<HighWaterMark value="6144"/>

<InterfaceName value=""/>

<DirectWrite value="0"/>

<MaxFragmentSize value="6144"/>

<NumInputBuffers value="10000"/>

<SysRecvBufSize value="65535"/>

<SysSendBufSize value="65535"/>

</Server>

<Server>

<Name value="Perf_Server_Websock_1"/>

<ServerType value="ServerType::RSSL_WEBSOCKET"/>

<CompressionType value="CompressionType::None"/>

<GuaranteedOutputBuffers value="50000"/>

<ConnectionPingTimeout value="30000"/>

<TcpNodelay value="1"/>

<Port value="14002"/>

<MaxFragmentSize value="6144"/>

<WsProtocols value="rssl.json.v2, rssl.rwf, tr_json2"/>

</Server>

<Server>

<Name value="Perf_Server_Encr_1"/>

<ServerType value="ServerType::RSSL_ENCRYPTED"/>

<CompressionType value="CompressionType::None"/>

<GuaranteedOutputBuffers value="50000"/>

<ConnectionPingTimeout value="30000"/>

<TcpNodelay value="1"/>

<ServerCert value="./cert/localhost.crt"/>

5 Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 34
EMAC380PETOO.240

Example 11: Server Section Example of Encrypted Connection

5.7 Output

EmaCppIProvPerf records statistics during a test such as:

• Item requests received

• Updates sent

• Posts received and reflected

• CPU and memory usage

• Latency data

For more detailed output file information, refer to Chapter 9, Output File Details.

5.7.1 EmaCppIProvPerf Summary File Sample

<ServerPrivateKey value="./cert/localhost.key"/>

<CipherSuite value=""/>

<WsProtocols value="rssl.json.v2, rssl.rwf, tr_json2"/>

</Server>

--- TEST INPUTS ---

Run Time: 360

Provider Name: Perf_Provider_1

useUserDispatch: No

mainThread CpuId: -1

Thread List: -1

Summary File: IProvSummary.out

Latency Log File: (none)

Write Stats Interval: 5

Display Stats: Yes

Tick Rate: 1000

Update Rate: 1000

Latency Update Rate: 10

Generic Msg Rate: 0

Latency Generic Msg Rate: 0

Refresh Burst Size: 10

Data File: MsgData.xml

Pre-Encoded Updates: No

Nanosecond Time: No

Measure Encode: No

--- OVERALL SUMMARY ---

Overall Statistics:

No GenMsg latency information was received.

Image requests received: 100000

5 Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 35
EMAC380PETOO.240

Code Example 12: EmaCppIProvPerf Summary File Sample

5.7.2 EmaCppIProvPerf Statistics File Sample

Code Example 13: EmaCppIProvPerf Statistics File Sample

5.7.3 EmaCppIProvPerf Console Output Sample

Code Example 14: EmaCppIProvPerf Console Output Sample

Updates sent: 52733

CPU/Memory samples: 10

CPU Usage max (%): 163.90

CPU Usage min (%): 99.81

CPU Usage avg (%): 113.08

Memory Usage max (MB): 546.78

Memory Usage min (MB): 546.68

Memory Usage avg (MB): 546.77

UTC, Requests received, Images sent, Updates sent, Posts reflected, GenMsgs sent, GenMsgs received,

GenMSg Latencies sent, GenMsg Latencies received, GenMsg Latency avg (usec), GenMsg Latency std dev

(usec), GenMsg Latency max (usec), GenMsg Latency min (usec), CPU usage (%), Memory (MB)

2021-06-04 18:23:47, 100000, 97066, 11, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 125.53, 546.68

2021-06-04 18:23:52, 0, 2934, 9189, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 102.13, 546.78

2021-06-04 18:23:57, 0, 0, 5004, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 100.23, 546.78

2021-06-04 18:24:02, 0, 0, 5002, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 102.15, 546.78

2021-06-04 18:24:07, 0, 0, 4993, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 99.83, 546.78

2021-06-04 18:24:12, 0, 0, 5004, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 99.92, 546.78

2021-06-04 18:24:17, 0, 0, 4994, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 99.81, 546.78

2021-06-04 18:24:22, 0, 0, 5001, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 112.18, 546.78

2021-06-04 18:24:27, 0, 0, 5005, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 163.90, 546.78

2021-06-04 18:24:32, 0, 0, 4994, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 125.14, 546.78

005: UpdRate: 2, CPU: 125.53%, Mem: 546.68MB

- Received 100000 item requests (total: 100000), sent 97066 images (total: 97066)

010: UpdRate: 1837, CPU: 102.13%, Mem: 546.78MB

- Received 0 item requests (total: 100000), sent 2934 images (total: 100000)

015: UpdRate: 1000, CPU: 100.23%, Mem: 546.78MB

020: UpdRate: 1000, CPU: 102.15%, Mem: 546.78MB

025: UpdRate: 998, CPU: 99.83%, Mem: 546.78MB

030: UpdRate: 1000, CPU: 99.92%, Mem: 546.78MB

035: UpdRate: 998, CPU: 99.81%, Mem: 546.78MB

040: UpdRate: 1000, CPU: 112.18%, Mem: 546.78MB

045: UpdRate: 1001, CPU: 163.90%, Mem: 546.78MB

050: UpdRate: 998, CPU: 125.14%, Mem: 546.78MB

6 Non-Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 36
EMAC380PETOO.240

6 Non-Interactive Provider Performance Tool

6.1 Overview

A Non-Interactive Provider publishes content regardless of consumer requests by connecting to an Refinitiv Real-Time Advanced Data
Hub and publishing content to the Refinitiv Real-Time Advanced Data Hub cache. After login, a non-interactive provider publishes a service
directory and then starts sending data for supported items.

EmaCppNIProvPerf implements an Open Message Model non-interactive provider using the Enterprise Message API C++ Edition for use
with the Refinitiv Real-Time Advanced Data Hub on the Refinitiv Real-Time Distribution System. It connects and logs into an Refinitiv Real-
Time Advanced Data Hub, publishes its service, and then provides images and updates.

EmaCppNIProvPerf uses EmaConfig.xml file to configure the Enterprise Message API.

When connecting, the non-interactive provider performs some administrative tasks, like processing system logins and publishing a directory
refresh. The EmaCppNIProvPerf uses Enterprise Message API that incorporates the Value Add Reactor component from the Transport API
to complete these tasks. For more information, refer to the Enterprise Message API Developers Guide.

6.2 Threading and Scaling

The Enterprise Message API is designed to allow sending data from multiple threads. So, the applications can scale their work across
multiple cores by creating multiple threads to handle multiple connections through the Enterprise Message API.

You can configure EmaCppNIProvPerf for multiple threads via the -threads command-line option. When you configure multiple threads,
each thread opens its own connection to the Refinitiv Real-Time Advanced Data Hub, and the list of items is divided among all threads. You
can use the -itemCount option to control the number of items that will be sent across all threads.

The main thread monitors the other threads and then collects and reports their statistics.

6.3 Non-Interactive Provider Lifecycle

Figure 14. EmaCppNIProvPerf Lifecycle

The lifecycle of EmaCppNIProvPerf is divided into the following sections:

1. Application and Enterprise Message API Initialization.

In this phase EmaCppNIProvPerf:

• Loads its configuration.

6 Non-Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 37
EMAC380PETOO.240

• Initializes the Enterprise Message API.

• Loads its item list, and sample message data using the specified files.

• Starts the thread(s) that will connect to the Refinitiv Real-Time Advanced Data Hub to perform the test.

- The main thread begins cycling: periodically collecting and writing statistics from the connection thread(s).
- Connection threads connect to the Refinitiv Real-Time Advanced Data Hub by using the Enterprise Message API. Once the

connection succeeds, the test begins and any subsequent disconnection ends the test.

2. Refinitiv Real-Time Advanced Data Hub Login and Directory.

3. The connection thread configures the Enterprise Message API to perform login operation, publish its service,Provide Open Message
Model content.

The connection thread begins providing the items specified in its item list, continually performing the following actions:

• Send a burst of updates for open items.

• If refreshes are needed, use spare time in the tick to send them.

• Using any spare time left, read from the transport and process incoming messages.

4. Application shutdown and cleanup.

The connection thread disconnects and stops. The main thread collects any remaining information from the connection threads, cleans
them up, and writes the final summary statistics. The main thread then cleans up the Enterprise Message API and any remaining
resources and then exits.

Run EmaCppNIProvPerf for a long enough period of time to allow for connected consumers to complete their measurements.

Figure 15. EmaCppNIProvPerf Application Flow

6 Non-Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 38
EMAC380PETOO.240

6.4 Latency Measurement

EmaCppNIProvPerf encodes a timestamp as part of its message payload. The timestamp is taken at the start of encoding and added as
field TIM_TRK_1 (3902). Latency is measured after a Consumer Performance tool decodes the message and payload.

 Non-Interactive Provider Latency Measurement Sequence:
1. Get the current time (t1).

2. Encode the message, including time t1.

3. Pass the message to the API, which passes it to underlying transport.

4. The consuming application receives a timestamp in the payload and compares it to the current time to calculate latency.

6.5 EmaCppNIProvPerf Configuration Options

EmaCppNIProvPerf uses EmaConfig.xml configuration file to setup an Enterprise Message API Non-Interactive provider and set of
command line options to configure specific behavior of performance tool.

EmaConfig.xml must have NiProvider section in the NiProviderGroup group and appropriate Channel section in Channel group for correct
configuration of the EMA Non-Interactive provider. For details on how to setup NiProvider and Channel sections, refer to the Enterprise
Message API Configuration Guide. For examples of configuration, refer to Section 6.6.1.

EmaCppNIProvPerf uses the command line option -providerName to specify name of NiProvider section.

EmaCppNIProvPerf uses the following command line options:

COMMAND-LINE OPTION DEFAULT DESCRIPTION

-cert Specifies the file containing the server certificate for encryption.

-commonItemCount 0 If multiple consumer threads are created (see -threads), each thread normally
requests a unique set of items on its connection. This option specifies the
number of common items to be requested by all connection.

-apiThreads -1 Specifies the CPU core(s) to bind the internal EMA API thread(s) to dispatch
received messages. The parameter is used when the application configures
EMA to work in API dispatch mode (see -useUserDispatch). By default,
EmaCppNIProvPerf does not bind the internal EMA API thread(s) to specific
CPU core(s). For details on the internal EMA API thread, refer to the Enterprise
Message API Developers Guide, 2.4 Product Architecture.
Specifies the CPU physical mapping in format P:X C:Y T:Z, logical core ID
(number), or no binding (-1).
Specifies the physical mapping which binds the thread to the specified physical
processor, core, and thread (P:X C:Y T:Z). This syntax specifies a physical CPU
to bind to. P refers to processor, C refers to core, and T refers to thread. If T is
not specified (or T:#), the thread will be bound to all threads on the specified
processor. If C is not specified (or C:#), the thread will be bound to all cores and
threads on that processor.
Specifying only one number causes a logical core ID to be bound instead of a
physical one. -1 means no bind.
For example, when specified as "1,3", the internal EMA API threads will be
bound to logical CPU cores 1 and 3.
The number of threads set by the parameter -threads should be matched.
For details on rsslBindThread, refer to the Transport API C++ Edition
Developers Guide.

Table 4: EmaCppNIProvPerf Configuration Options

6 Non-Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 39
EMAC380PETOO.240

-itemCount 100000 Sets the total number of items that the provider will publish.

-itemFile 350k.xml Specifies the file that contains a list of items the provider will publish. For more
details on input file information, refer to Section 8.2.

-key Specifies the file containing the server private key for encryption.

-latencyUpdateRate 10 Sets the number of updates with latency information sent per second.

NOTE:
• This number must be less than or equal to the total update rate (see -

updateRate).
• When you set the value “all” then the latency data is added to each

update message.

-mainThread -1 Specifies the CPU core to bind the main application thread that controls working
threads, collects and prints statistics. By default, EmaCppNIProvPerf does not
bind the main thread to specific CPU core.
Specifies the CPU physical mapping in format P:X C:Y T:Z, logical core ID
(number), or no binding (-1).
Specifies the physical mapping which binds the thread to the specified physical
processor, core, and thread (P:X C:Y T:Z). This syntax specifies a physical CPU
to bind to. P refers to processor, C refers to core, and T refers to thread. If T is
not specified (or T:#), the thread will be bound to all threads on the specified
processor. If C is not specified (or C:#), the thread will be bound to all cores and
threads on that processor.
Specifying only one number causes a logical core ID to be bound instead of a
physical one. -1 means no bind.
For example, when specified "3", the main thread will be bound to logical CPU
core 3.
For details on rsslBindThread, refer to the Transport API C++ Edition
Developers Guide.

-maxPackCount 1 Specifies maximum number of messages packed in a buffer. When count is > 1,
packing is enabled.

-measureDecode (no argument) Configures EmaCppNIProvPerf to measure decoding time of messages. By
default, the measurement is not produced.

-measureEncode (no argument) Configures EmaCppNIProvPerf to measure encoding time of messages. By
default, the measurement is not produced.

-msgFile MsgData.xml Specifies the file that determines the provider’s message content. For more
details on input file information, refer to Section 8.1.

-nanoTime (no argument) Specifies nanosecond precision for latency information instead of microsecond.

-noDisplayStats (no argument) Turns off printing statistics to the screen.

-packBufSize 6000 If message packing is enabled (i.e. maxPackCount > 1), sets the size of buffer
to use.

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 4: EmaCppNIProvPerf Configuration Options (Continued)

6 Non-Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 40
EMAC380PETOO.240

-preEnc (no argument) Specifies pre-encoding for update messages. All the template message (see
MsgData.xml) will be encoded before real sending. It decreases the time
required for message preparation. By default, EmaCppNIProvPerf encodes
messages each time.

NOTE: When a latency data is required then the messages that contain latency
is encoded each time (see -latencyUpdateRate).

-providerName Perf_NIProvider_ Specifies the name of provider in XML configuration file (EmaConfig.xml).

-refreshBurstSize 10 After the provider completes an update burst, it uses the time before the next
burst to send any needed refreshes, monitoring the time to see whether it is time
for the next tick time.
This option configures how often the provider checks the time (in case checking
is expensive for the system).

-runTime 360 Sets the length of time for which EmaCppNIProvPerf runs, in seconds.

-serviceId 1 Specifies the provider’s service ID.

-serviceName DIRECT_FEED Specifies the provider’s service name.

-statsFile NIProvStats Specifies the base filename used to write the provider's test statistics.

-summaryFile NIProvSummary.out Specifies the base filename used to write the provider's test summary.

-threads The value of "-threads" serves two purposes: It defines the number of parallel
threads/connections to be created AND where to bind each thread. For
example, if an application wants to horizontally scale and open two connections,
there should be two values for -threads: 0,1 OR P:0 C:0 T:0, P:0 C:0 T:1 OR -
1, -1. The number of values specified indicates the number of threads to start
(comma separated). The thread binding may be formatted or specified as
follows: physical binding (P:X C:Y T:Z) OR logical binding (X) or -1 (no binding).
Physical binding: specify physical CPU to bind to: P refers to processor, C refers
to core, and T refers to thread. If T is not specified (or T:#), the thread will be
bound to all threads on the specified processor. If C is not specified (or C:#), the
thread will be bound to all cores and threads on that processor.
Specifying only one number causes a logical core ID to be bound instead of a
physical one. -1 means no bind.
For example, when specified as "1,3", it creates two threads to publish items
respectively, and they are bound to CPU cores 1 and 3.
In conjunction with -threads, one may specify -apiThreads and -
workerThreads. For details on rsslBindThread, refer to the Transport API
C++ Edition Developers Guide.

-tickRate 1000 Sets the number of ticks per second (the number of cycles per second made by
the provider’s main loop). Adjusting the tick rate changes the size of update
bursts; higher tick rates result in smaller individual bursts and smoother traffic.

-updateRate 100000 Sets the total number of updates sent per second, per connection.

NOTE: This cannot be less than the tick rate, unless it is 0 (see -tickRate).

-useServiceId (no argument) Turns on the usage of the service ID. See the -serviceId option.

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 4: EmaCppNIProvPerf Configuration Options (Continued)

6 Non-Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 41
EMAC380PETOO.240

-useUserDispatch 0 Configures how EmaCppNIProvPerf and Enterprise Message API dispatch
receive messages. When you select 0 (API dispatch model), then
EmaCppNIProvPerf configures the Enterprise Message API to create an
additional internal thread to dispatch received messages. When you select 1
(user dispatch model), the Enterprise Message API does not run a second
thread and the EmaCppNIProvPerf is responsible for dispatching all received
messages. By default, EmaCppNIProvPerf uses the API dispatch model.
For details on how an Enterprise Message API application dispatches received
messages, refer to the Enterprise Message API Developers Guide.

-workerThreads None Specifies the CPU core(s) to bind the Reactor worker thread(s). By default,
EmaCppNIProvPerf does not bind the Reactor worker thread(s) to specific
CPU core(s). For details on Value Added Components, refer to the Transport
API Value Added Components Developers Guide.
Specifies the CPU physical mapping in format P:X C:Y T:Z, logical core ID
(number), or no binding (-1).
Specifies the physical mapping which binds the thread to the specified physical
processor, core, and thread (P:X C:Y T:Z). This syntax specifies a physical CPU
to bind to. P refers to processor, C refers to core, and T refers to thread. If T is
not specified (or T:#), the thread will be bound to all threads on the specified
processor. If C is not specified (or C:#), the thread will be bound to all cores and
threads on that processor.
Specifying only one number causes a logical core ID to be bound instead of a
physical one. -1 means no bind.
For example, when specified as "1,3", the Reactor worker threads will be bound
to logical CPU cores 1 and 3.
The number of threads set by the parameter -threads should be matched.
For details on rsslBindThread, refer to the Transport API C++ Edition
Developers Guide.

-writeStatsInterval 5 Sets how often statistics are printed to the screen and statistics file (in seconds).

COMMAND-LINE OPTION DEFAULT DESCRIPTION

Table 4: EmaCppNIProvPerf Configuration Options (Continued)

6 Non-Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 42
EMAC380PETOO.240

6.6 Input Files

EmaCppNIProvPerf requires the following files:

• An XML configuration file for initializing Enterprise Message API. The package includes a default file (EmaConfig.xml) with this
information.

• An XML file that describes EmaCppNIProvPerf message data. By default, the package includes the file: MsgData.xml.

• Dictionary files to validate fields present in the message data. By default, the package includes the RDMFieldDictionary and
enumtype.def files.

• An XML file that describes the items that EmaCppNIProvPerf should publish. By default, the package includes the file, 350k.xml.

For more detailed input file information, refer to Chapter 8, Input File Details8, Input File Details.

6.6.1 EmaConfig.xml Examples
EmaConfig.xml must have NiProvider section in the NiProviderGroup group and appropriate Channel section in the Channel group for
correct configuration the Enterprise Message API Non-Interactive provider. For details on how to setup NiProvider and Channel sections,
refer to the Enterprise Message API Configuration Guide.

6.6.1.1 NiProvider Section
When creating a NiProvider section, you must include the Name and Channel fields. For details on Name and Channel, refer to the
Enterprise Message API Configuration Guide.

Example 15: NiProvider Section Example

NOTE: All type of connections require appropriate configuration of ADH. For more information on configuration, refer to the ADS or ADH
Software Installation Manuals.

<NiProvider>
<Name value="Perf_NIProvider"/>
<Channel value="Perf_NIP_Channel_1"/>
<Directory value="Perf_Directory_1"/>
<Logger value="Logger_1"/>
<XmlTraceToStdout value="0"/>

</NiProvider>

6 Non-Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 43
EMAC380PETOO.240

6.6.1.2 Channel Section
When creating a channel section, you must include the Name and ChannelType fields. For details on Name and ChannelType, refer to the
Enterprise Message API Configuration Guide.

You must specify Host and Port fields to connect to ADH for TCP connection.

You must specify RecvAddress, RecvPort, SendAddress, SendPort, UnicastPort, and InterfaceName fields to connect to ADH for
reliable multi-cast connection.

You must specify Host, Port, and OpenSSLCAStore fields to connect to ADH for encrypted connection.

Example 16: Channel Section Example of the TCP Connection Type

Example 17: Server Section Example of the Reliable Multi-cast Connection

<Channel>

<Name value="Perf_NIP_Channel_1"/>

<ChannelType value="ChannelType::RSSL_SOCKET"/>

<GuaranteedOutputBuffers value="100000"/>

<ConnectionPingTimeout value="30000"/>

<TcpNodelay value="0"/>

<Host value="adh_ip_address"/>

<Port value="14003"/>

</Channel>

<Channel>

<Name value="Perf_NIP_Channel_Mcast_1"/>

<ChannelType value="ChannelType::RSSL_RELIABLE_MCAST"/>

<RecvAddress value="mcast_recv_ip_address"/>

<RecvPort value="mcast_recv_port"/>

<SendAddress value="mcast_send_ip_address"/>

<SendPort value="mcast_send_port"/>

<UnicastPort value="50000"/>

<InterfaceName value="ip_address"/>

</Channel>

<Channel>

<Name value="Perf_NIP_Channel_Encr_1"/>

<ChannelType value="ChannelType::RSSL_ENCRYPTED"/>

<EncryptedProtocolType value="EncryptedProtocolType::RSSL_SOCKET"/>

<GuaranteedOutputBuffers value="100000"/>

<ConnectionPingTimeout value="30000"/>

<TcpNodelay value="0"/>

<Host value="adh_ap_address"/>

<Port value="adh_rsslServerPort"/>

<OpenSSLCAStore value="./myCA.pem"/>

</Channel>

6 Non-Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 44
EMAC380PETOO.240

Example 18: Server Section Example of the Encrypted Connection

6.7 Output

EmaCppNIProvPerf records statistics during a test, such as:

• The number of sent images

• The number of sent updates

• CPU and memory usage

For more detailed output file information, refer to Chapter 9.

6 Non-Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 45
EMAC380PETOO.240

6.7.1 EmaCppNIProvPerf Summary File Sample

Code Example 19: EmaCppNIProvPerf Summary File Sample

6.7.2 EmaCppNIProvPerf Statistics File Sample

--- TEST INPUTS ---

Run Time: 360

Provider Name: Perf_NIProvider

useUserDispatch: No

mainThread CpuId: -1

Thread List: -1

Summary File: NIProvSummary.out

Stats File: NIProvStats

Write Stats Interval: 5

Display Stats: Yes

Item Count: 10000

Tick Rate: 1000

Update Rate: 100000

Latency Update Rate: 10

Refresh Burst Size: 10

Item File: 350k.xml

Data File: MsgData.xml

Service Name: NI_PUB

Pre-Encoded Updates: No

Nanosecond Time: No

Measure Encode: No

--- OVERALL SUMMARY ---

Overall Statistics:

Images sent: 10000

Updates sent: 5323442

CPU/Memory samples: 10

CPU Usage max (%): 67.68

CPU Usage min (%): 60.09

CPU Usage avg (%): 62.81

Memory Usage max (MB): 555.56

Memory Usage min (MB): 472.52

Memory Usage avg (MB): 514.23

UTC, Images sent, Updates sent, CPU usage (%), Memory (MB)

2021-06-08 15:11:50, 10000, 465383, 63.14, 472.52

2021-06-08 15:11:55, 0, 499995, 64.26, 482.06

2021-06-08 15:12:00, 0, 500022, 62.47, 491.62

2021-06-08 15:12:05, 0, 500000, 67.68, 500.39

2021-06-08 15:12:10, 0, 499948, 61.46, 509.67

2021-06-08 15:12:15, 0, 500052, 60.09, 518.95

2021-06-08 15:12:20, 0, 499984, 61.43, 527.97

6 Non-Interactive Provider Performance Tool

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 46
EMAC380PETOO.240

Code Example 20: EmaCppNIProvPerf Statistics File Sample

6.7.3 EmaCppNIProvPerf Console Output Sample

Code Example 21: EmaCppNIProvPerf Console Output Sample

2021-06-08 15:12:25, 0, 499991, 61.01, 537.25

2021-06-08 15:12:30, 0, 500025, 62.72, 546.28

2021-06-08 15:12:35, 0, 500000, 63.88, 555.56

005: UpdRate: 93076, CPU: 63.14%, Mem: 472.52MB

- Sent 10000 images (total: 10000)

010: UpdRate: 99999, CPU: 64.26%, Mem: 482.06MB

015: UpdRate: 100004, CPU: 62.47%, Mem: 491.62MB

020: UpdRate: 100000, CPU: 67.68%, Mem: 500.39MB

025: UpdRate: 99989, CPU: 61.46%, Mem: 509.67MB

030: UpdRate: 100010, CPU: 60.09%, Mem: 518.95MB

035: UpdRate: 99996, CPU: 61.43%, Mem: 527.97MB

040: UpdRate: 99998, CPU: 61.01%, Mem: 537.25MB

045: UpdRate: 100005, CPU: 62.72%, Mem: 546.28MB

050: UpdRate: 100000, CPU: 63.88%, Mem: 555.56MB

7 Performance Measurement Scenarios

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 47
EMAC380PETOO.240

7 Performance Measurement Scenarios

7.1 Interactive Provider to Consumer, Through Refinitiv Real-Time Distribution System

You can measure interactive providers by connecting the following components, as described below and shown in the following picture:

• Connect EmaCppConsPerf to a Refinitiv Real-Time Advanced Distribution Server.

• Connect the Refinitiv Real-Time Advanced Distribution Server to a Refinitiv Real-Time Advanced Data Hub. You can do so using
the RRCP backbone.

• Connect the Refinitiv Real-Time Advanced Data Hub with an instance of EmaCppIProvPerf or EMAC ProvPerf.

You can perform this test with caching enabled or disabled in the Refinitiv Real-Time Advanced Data Hub or Refinitiv Real-Time Advanced
Distribution Server, as ProvPerf acts as the cache of record in this scenario.

Figure 16. Interactive Provider to Consumer on Refinitiv Real-Time Distribution System

 To run a basic performance measurement:

1. Configure Perf_Server_1, change <Port value="17008" />.

2. Configure Perf_Channel_1, change <Host value="adshost" />, <Port value="14002"/>.

3. Configure Directory_2, change <Service><Name value="TEST_FEED"/>.

4. Run ProvPerf and EmaCppConsPerf with the following command-line options. These options assume TEST_FEED is the service
being used and 17008 is the port number. Modify the example values as necessary.

EmaCppIProvPerf -providerName Perf_Provider

EmaCppConsPerf -serviceName TEST_FEED -consumerName Perf_Consumer_1

7 Performance Measurement Scenarios

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 48
EMAC380PETOO.240

7.2 Interactive Provider to Consumer, Direct Connect

You can measure the interactive providers of data by connecting EmaCppConsPerf directly to EmaCppIProvPerf.

Figure 17. Interactive Provider to Consumer, Direct Connect

Using their default configuration options, you can run this test without any additional command-line options. Simply run the provider and
consumer applications as follows:

EmaCppIProvPerf -providerName Perf_Provider

EmaCppConsPerf -serviceName DIRECT_FEED -consumerName Perf_Consumer_1

7 Performance Measurement Scenarios

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 49
EMAC380PETOO.240

7.3 Non-Interactive Provider to Consumer, Through Refinitiv Real-Time Distribution System

You can measure non-interactive providers on Refinitiv Real-Time Distribution System by connecting the following components, as
described below and displayed in the following picture:

• Connect EmaCppConsPerf to a Refinitiv Real-Time Advanced Distribution Server.

• Connect the Refinitiv Real-Time Advanced Distribution Server with a Refinitiv Real-Time Advanced Data Hub. You can do so by
using the RRCP backbone.

• Connect EmaCppNIProvPerf to the Refinitiv Real-Time Advanced Data Hub. Ensure that the Refinitiv Real-Time Advanced Data
Hub has caching enabled, because it acts as the cache of record in this scenario.

Figure 18. EmaCppNIProvPerf to Consumer on the Refinitiv Real-Time Distribution System

EmaCppConsPerf may receive a Closed status if it requests an item not yet provided by EmaCppNIProvPerf to the Refinitiv Real-Time
Advanced Data Hub cache. To ensure the test completes successfully, you must do either one of the following:

1. Preload the Refinitiv Real-Time Advanced Data Hub cache. EmaCppNIProvPerf must have provided refreshes for all of its items to the
Refinitiv Real-Time Advanced Data Hub before EmaCppConsPerf connects to the Refinitiv Real-Time Advanced Distribution Server.

2. Configure the Refinitiv Real-Time Advanced Data Hub to provide temporary refreshes in place of the uncached items.
EmaCppConsPerf knows to allow these images, and does not count them towards the image retrieval time, due to their Suspect data
state.

For more details on this configuration, refer to the Refinitiv Real-Time Advanced Data Hub Software Installation Manual.

 To run a basic performance measurement:
1. Configure Perf_NIP_Channel_1, change <Host value="adhhost"/>, <Port value="14003"/>.

2. Configure Perf_Channel_1, change <Host value="adshost"/>, <Port value="14002">.

3. Configure Perf_Directory_1, change <Service><Name value="TEST_FEED"/>.

4. Run EmaCppNIProvPerf and EmaCppConsPerf with the following command-line options. These options assume the provided service
is TEST_FEED. Modify the example values as necessary.

EmaCppNIProvPerf -serviceName TEST_FEED -providerName Perf_NIProvider_1

EmaCppConsPerf -serviceName TEST_FEED

7 Performance Measurement Scenarios

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 50
EMAC380PETOO.240

7.4 Consumer Posting on the Refinitiv Real-Time Distribution System

To measure posting performance on the Refinitiv Real-Time Distribution System, connect the following components, as described below and
displayed in the following picture:

• Connect EMACppConsPerf to a Refinitiv Real-Time Advanced Distribution Server.

• Connect the Refinitiv Real-Time Advanced Distribution Server to a Refinitiv Real-Time Advanced Data Hub. You can do so using
the RRCP backbone.

• Connect EmaCppNIProvPerf to the Refinitiv Real-Time Advanced Data Hub. The Refinitiv Real-Time Advanced Data Hub must
have caching enabled, because it acts as the cache of record in this scenario.

As the posted messages return from the Refinitiv Real-Time Distribution System, the consumer can distinguish them via the presence of
their RsslPostUserInfo. When configured to do so, EMACppConsPerf embeds timestamps in some of its posts which it uses to measure
round-trip latency.

Figure 19. Consumer Posting to Refinitiv Real-Time Distribution System

Update traffic is optional. If you want to test posting without updates, configure EmaCppNIProvPerf by specifying -updateRate 0 -
latencyUpdateRate 0 in the command line.

Additionally, if you want only posting traffic, you do not need to run a provider application. You can configure the Refinitiv Real-Time
Distribution System to provide the necessary service information and refresh content. For more details on this configuration, refer to the
Refinitiv Real-Time Advanced Data Hub Software Installation Manual.

 To run a basic performance measurement:
1. Configure Perf_NIP_Channel_1, change <Host value="adhhost"/>, <Port value="14003"/>.

2. Configure Perf_Channel_1, change <Host value="adshost"/>, <Port value="14002">.

3. Configure Perf_Directory_1, change <Service><Name value="TEST_FEED"/>.

4. Run EmaCppNIProvPerf and EmaCppConsPerf with the following command-line options. These options assume TEST_FEED is the
service being provided. Modify the example values as necessary.

-consumerName Perf_Consumer_1

EmaCppNIProvPerf -h adhhost -p 14003 -serviceName TEST_FEED

EmaCppConsPerf -h adshost -p 14002 -serviceName TEST_FEED -postingRate 10000 -postingLatencyRate 10

8 Input File Details

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 51
EMAC380PETOO.240

8 Input File Details

8.1 Message Content File and Format

The message data XML file (MsgData.xml) provided with the Performance Suite describes sample data for the refreshes, updates, and
posts encoded by the tools. You can customize MsgData.xml to suit desired test scenarios.

The XML file must contain data for:

• One refresh message.

• At least one update message.

• At least one post message, if posting from EmaCppConsPerf.

• At least one generic message, if configured for exchanging generic messages.

Refresh data provides the image for each item provided by EmaCppIProvPerf or EmaCppNIProvPerf. When providing updates, provider
tools encode update messages in a round-robin manner for each item. Likewise, when posting, the EmaCppConsPerf encodes posts in a
round-robin fashion for each item.

8.1.1 Encoding Fields
Performance tools can encode in their fields any of the primitive types supported by the Enterprise Message API.

Each field must have the correct type for its ID according to the dictionary loaded by the tool. Fields are validated by the message data
parser.

8 Input File Details

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 52
EMAC380PETOO.240

8.1.2 Sample Update Message

Code Example 22: Sample Update Message

8.1.3 Sample MarketByOrder Data
Performance tools also support MarketByOrder data, however it is currently experimental. To allow tools to provide MarketByOrder data, you
can add the following data to MsgData.xml:

<updateMsg>

<dataBody>

<fieldList entryCount="23">

<fieldEntry fieldId="22" dataType="RSSL_DT_REAL" data="2848.560000"/>

<fieldEntry fieldId="25" dataType="RSSL_DT_REAL" data="2849.610000"/>

<fieldEntry fieldId="30" dataType="RSSL_DT_REAL" data="1"/>

<fieldEntry fieldId="31" dataType="RSSL_DT_REAL" data="1"/>

<fieldEntry fieldId="6579" dataType="RSSL_DT_RMTES_STRING" data="R"/>

<fieldEntry fieldId="6580" dataType="RSSL_DT_RMTES_STRING" data="R"/>

<fieldEntry fieldId="114" dataType="RSSL_DT_REAL" data="13.340000"/>

<fieldEntry fieldId="1000" dataType="RSSL_DT_RMTES_STRING" data=" "/>

<fieldEntry fieldId="8937" dataType="RSSL_DT_ENUM" data="0"/>

<fieldEntry fieldId="211" dataType="RSSL_DT_REAL" data="31701"/>

<fieldEntry fieldId="118" dataType="RSSL_DT_ENUM" data="0"/>

<fieldEntry fieldId="3264" dataType="RSSL_DT_ENUM" data="0"/>

<fieldEntry fieldId="3887" dataType="RSSL_DT_REAL" data="39100330"/>

<fieldEntry fieldId="8935" dataType="RSSL_DT_ENUM" data="1"/>

<fieldEntry fieldId="1501" dataType="RSSL_DT_RMTES_STRING" data=" "/>

<fieldEntry fieldId="12783" dataType="RSSL_DT_ENUM" data="4"/>

<fieldEntry fieldId="3855" dataType="RSSL_DT_UINT" data="57132000"/>

<fieldEntry fieldId="1025" dataType="RSSL_DT_TIME" data="15:52:12:000:000:000"/>

<fieldEntry fieldId="5" dataType="RSSL_DT_TIME" data="15:52:00:000:000:000"/>

<fieldEntry fieldId="8406" dataType="RSSL_DT_RMTES_STRING" data=" "/>

<fieldEntry fieldId="1041" dataType="RSSL_DT_RMTES_STRING" data=" "/>

<fieldEntry fieldId="203" dataType="RSSL_DT_REAL" data="2848.560000"/>

<fieldEntry fieldId="14238" dataType="RSSL_DT_TIME" data="15:52:12:000:000:000"/>

</fieldList>

</dataBody>

</updateMsg>

<!-- MarketByOrder -->

<marketByOrderMsgList>

<!-- ORDER_SIDE enumerations: BID is 1, ASK is 2 -->

<refreshMsg>

<dataBody>

<map>

<fieldSetDefs>

8 Input File Details

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 53
EMAC380PETOO.240

<fieldSetDef setId="0">

<fieldSetDefEntry fieldId="3427" dataType="RSSL_DT_REAL" />

<fieldSetDefEntry fieldId="3429" dataType="RSSL_DT_REAL" />

<fieldSetDefEntry fieldId="3855" dataType="RSSL_DT_UINT_2" />

<fieldSetDefEntry fieldId="212" dataType="RSSL_DT_RMTES_STRING" />

<fieldSetDefEntry fieldId="3428" dataType="RSSL_DT_ENUM" />

</fieldSetDef>

</fieldSetDefs>

<mapEntry action="RSSL_MPEA_ADD_ENTRY" key="100" >

<fieldList setId="0">

<fieldEntry fieldId="3427" dataType="RSSL_DT_REAL" data="360287970189639.67"/>

<fieldEntry fieldId="3429" dataType="RSSL_DT_REAL" data="36028797018963967"/>

<fieldEntry fieldId="3855" dataType="RSSL_DT_UINT" data="0"/>

<fieldEntry fieldId="212" dataType="RSSL_DT_RMTES_STRING" data="MarketMaker1"/>

<fieldEntry fieldId="3428" dataType="RSSL_DT_ENUM" data="1"/>

</fieldList>

</mapEntry>

<mapEntry action="RSSL_MPEA_ADD_ENTRY" key="101" >

<fieldList setId="0">

<fieldEntry fieldId="3427" dataType="RSSL_DT_REAL" data="360287970189638.67"/>

<fieldEntry fieldId="3429" dataType="RSSL_DT_REAL" data="36028797018963467"/>

<fieldEntry fieldId="3855" dataType="RSSL_DT_UINT" data="500"/>

<fieldEntry fieldId="212" dataType="RSSL_DT_RMTES_STRING" data="MarketMaker2"/>

<fieldEntry fieldId="3428" dataType="RSSL_DT_ENUM" data="1"/>

</fieldList>

</mapEntry>

<mapEntry action="RSSL_MPEA_ADD_ENTRY" key="102" >

<fieldList setId="0">

<fieldEntry fieldId="3427" dataType="RSSL_DT_REAL" data="360287970189637.67"/>

<fieldEntry fieldId="3429" dataType="RSSL_DT_REAL" data="36028797018962967"/>

<fieldEntry fieldId="3855" dataType="RSSL_DT_UINT" data="1000"/>

<fieldEntry fieldId="212" dataType="RSSL_DT_RMTES_STRING" data="MarketMaker3"/>

<fieldEntry fieldId="3428" dataType="RSSL_DT_ENUM" data="2"/>

</fieldList>

</mapEntry>

<mapEntry action="RSSL_MPEA_ADD_ENTRY" key="103" >

<fieldList setId="0">

<fieldEntry fieldId="3427" dataType="RSSL_DT_REAL" data="360287970189636.67"/>

<fieldEntry fieldId="3429" dataType="RSSL_DT_REAL" data="36028797018962467"/>

<fieldEntry fieldId="3855" dataType="RSSL_DT_UINT" data="1500"/>

<fieldEntry fieldId="212" dataType="RSSL_DT_RMTES_STRING" data="MarketMaker4"/>

<fieldEntry fieldId="3428" dataType="RSSL_DT_ENUM" data="2"/>

</fieldList>

</mapEntry>

<mapEntry action="RSSL_MPEA_ADD_ENTRY" key="104" >

<fieldList setId="0">

<fieldEntry fieldId="3427" dataType="RSSL_DT_REAL" data="360287970189635.67"/>

<fieldEntry fieldId="3429" dataType="RSSL_DT_REAL" data="36028797018961967"/>

<fieldEntry fieldId="3855" dataType="RSSL_DT_UINT" data="2000"/>

<fieldEntry fieldId="212" dataType="RSSL_DT_RMTES_STRING" data="MarketMaker5"/>

8 Input File Details

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 54
EMAC380PETOO.240

<fieldEntry fieldId="3428" dataType="RSSL_DT_ENUM" data="2"/>

</fieldList>

</mapEntry>

</map>

</dataBody>

</refreshMsg>

<updateMsg>

<dataBody>

<map>

<mapEntry action="RSSL_MPEA_UPDATE_ENTRY" key="100" >

<fieldList>

<fieldEntry fieldId="3427" dataType="RSSL_DT_REAL" data="360287970189638.67"/>

<fieldEntry fieldId="3429" dataType="RSSL_DT_REAL" data="36028797018963867"/>

<fieldEntry fieldId="3855" dataType="RSSL_DT_UINT" data="0"/>

</fieldList>

</mapEntry>

<mapEntry action="RSSL_MPEA_UPDATE_ENTRY" key="101" >

<fieldList>

<fieldEntry fieldId="3427" dataType="RSSL_DT_REAL" data="360287970189635.67"/>

<fieldEntry fieldId="3429" dataType="RSSL_DT_REAL" data="36028797018963567"/>

<fieldEntry fieldId="3855" dataType="RSSL_DT_UINT" data="500"/>

</fieldList>

</mapEntry>

<mapEntry action="RSSL_MPEA_UPDATE_ENTRY" key="102" >

<fieldList>

<fieldEntry fieldId="3427" dataType="RSSL_DT_REAL" data="360287970189632.67"/>

<fieldEntry fieldId="3429" dataType="RSSL_DT_REAL" data="36028797018963267"/>

<fieldEntry fieldId="3855" dataType="RSSL_DT_UINT" data="1000"/>

</fieldList>

</mapEntry>

<mapEntry action="RSSL_MPEA_UPDATE_ENTRY" key="103" >

<fieldList>

<fieldEntry fieldId="3427" dataType="RSSL_DT_REAL" data="360287970189629.67"/>

<fieldEntry fieldId="3429" dataType="RSSL_DT_REAL" data="36028797018962967"/>

<fieldEntry fieldId="3855" dataType="RSSL_DT_UINT" data="1500"/>

</fieldList>

</mapEntry>

<mapEntry action="RSSL_MPEA_UPDATE_ENTRY" key="104" >

<fieldList>

<fieldEntry fieldId="3427" dataType="RSSL_DT_REAL" data="360287970189626.67"/>

<fieldEntry fieldId="3429" dataType="RSSL_DT_REAL" data="36028797018962667"/>

<fieldEntry fieldId="3855" dataType="RSSL_DT_UINT" data="2000"/>

</fieldList>

</mapEntry>

</map>

</dataBody>

</updateMsg>

</marketByOrderMsgList>

8 Input File Details

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 55
EMAC380PETOO.240

Code Example 23: Sample MarketByOrder Data

8.2 Item List File

The Item List File configures the full list of items as requested by EmaCppConsPerf or published by EmaCppNIProvPerf. Each entry
specifies the item’s name and how it is requested. The file must contain enough entries to satisfy the number of items needed by the
respective tool.

The sample file 350k.xml contains 350,000 items, some of which allow posting.

8.2.1 Item Attributes

8.2.2 Sample Item List File

ATTRIBUTE NAME DEFAULT DESCRIPTION

domain (none, required) Specifies the domain from which the item is requested.
This must be set to MarketPrice.

genMsg “false” If set to true, generic messages are sent for this item (if generic messages are enabled).

name (none, required) Specifies the name used in the MsgKey when requesting the item.

post “false” If set to true, EmaCppConsPerf sends posts to this item (if posting is enabled).

snapshot “false” If set to true, EmaCppConsPerf requests this item as a snapshot (i.e., without setting the
RSSL_RQF_STREAMING flag on the request).

Table 5: Item Attributes

<itemList>

<item domain="MarketPrice" name="RDT1" post="true" genMsg="true" />

<item domain="MarketPrice" name="RDT2" post="true" />

<item domain="MarketPrice" name="RDT3" post="true" />

<item domain="MarketPrice" name="RDT4" post="true" />

<item domain="MarketPrice" name="RDT5" post="true" />

<item domain="MarketPrice" name="RDT6" post="true" />

<item domain="MarketPrice" name="RDT7" post="true" />

<item domain="MarketPrice" name="RDT8" />

<item domain="MarketPrice" name="RDT9" />

<item domain="MarketPrice" name="RDT10" />

<item domain="MarketPrice" name="RDT11" />

<item domain="MarketPrice" name="RDT12" />

<item domain="MarketPrice" name="RDT13" />

<item domain="MarketPrice" name="RDT14" />

<item domain="MarketPrice" name="RDT15" />

<item domain="MarketPrice" name="RDT16" />

<item domain="MarketPrice" name="RDT17" />

<item domain="MarketPrice" name="RDT18" />

</itemList>

8 Input File Details

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 56
EMAC380PETOO.240

Code Example 24: Sample Item List File

9 Output File Details

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 57
EMAC380PETOO.240

9 Output File Details

9.1 Overview

Applications in the Performance Suite send similar output to the console and to files. Each application can configure its output using the
configuration parameters:

• writeStatsInterval (1 to n): The interval (in seconds) at which timed statistics are written to files.

• noDisplayStats: Disables statistics output to the console.

Providers and consumers output different statistics but in a similar fashion. Each application can be configured to output a summary file, a
statistics file, and in the case of the consumer, a latency file comprised of individual latencies for each received latency item.

9.2 Output Files and Their Descriptions

You can configure the names of output files, though applications append the client number to their stats and latency files. So for example, a
horizontal scaling test with two consumer threads produces two statistics files: ConsStats1.csv and ConsStats2.csv.

Default output filenames (and the associated parameters you use to generate the files) are as follows:

PARAMETER DEFAULT DESCRIPTION

-latencyFile (none) Specifies the filename of the latency file produced.

-statsFile ToolTypeStatsclient.csva

a. Where ToolType is either Cons, IProv, or NIProv.

Specifies the filename of the statistics file produced.

-summaryFile ToolTypeSummary.txt Specifies the filename of the summary file produced.

Table 6: Performance Suite Applications and Associated Configuration Files

9 Output File Details

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 58
EMAC380PETOO.240

9.3 Latency File

The latency file is a comma-separated value file containing individual latencies, in microseconds, for timestamps received during the test. It
is only created by EmaCppConsPerf.

The interval in seconds that statistics are written to the file is controlled by the writeStatsInterval configuration parameter, which defaults to
5.

Code Example 25: Sample ConsLatency.csv Showing Update and Post latencies during a Test Run

NOTE: Due to the potentially large amount of output in scenarios that use a high latency message rate, this file is not produced by default.

Message type, Send time, Receive time, Latency (usec)

Upd, 353725032296, 353725032521, 225

Upd, 353725045319, 353725045569, 250

Upd, 353725092300, 353725092521, 221

Pst, 353724892323, 353724894740, 2417

Pst, 353724925257, 353724926441, 1184

Pst, 353725105324, 353725106762, 1438

Upd, 353725359645, 353725359859, 214

Upd, 353725610354, 353725610619, 265

9 Output File Details

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 59
EMAC380PETOO.240

9.4 File Import

You can import output .csv files into data analysis software. For example, you can use Microsoft Excel and Microsoft Access to import and
quickly analyze your test results. Shown below are graphs created in Excel after importing a statistics .csv file for a test run. Note that these
are sample graphs and do not imply the real performance results of the tool suite.

Figure 20. Sample Excel Graph from ConsStats1.csv

Figure 21. Sample Excel Graph of Latencies Over a 15-second Steady State Interval from ConsLatency1.csv

10 Performance Best Practices

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 60
EMAC380PETOO.240

10 Performance Best Practices

10.1 Overview

The Performance Test Tools Suite leverages a number of features of the Enterprise Message API to achieve high throughput and low latency
when sending and receiving messages. This section briefly describes test tool features, the features’ benefits, and how the tools use them.
For more details on each feature, refer to the Enterprise Message API Configuration Guide.

10.2 Enterprise Message API Best Practices

10.2.1 dispatch
The dispatch()method is used to read messages from network. The application can call this method by using the user thread or API
dispatching thread depending on the operational model of OmmConsumer and OmmProvider. The application thread or API dispatching
thread must always call the dispatch()method to receive messages via callback methods and process these messages. Application can
configure the MaxDispatchCountApiThread and MaxDispatchCountUserThread parameters to specify maximum number of messages
that can be dispatched in a single call of the dispatch()method before taking a break.

10.2.2 submit
To make efficient use of underlying transport function calls, the submit function passes messages to an outbound queue of the specified
priority, rather than immediately writing the message to the network.

The network write occurs if:

• Enterprise Message API internally calls rsslFlush on the Channel instance in the Transport layer.

• HighWaterMark configuration parameter in Channel or Server group submit If DirectWrite is set, the API will flush each message
upon submission without waiting to queue data. If set in conjunction with highWaterMark, directWrite takes precedence.

10.2.3 High-water Mark
Higher throughput is usually achieved by making a small number of large writes to the transport instead of doing a large number of small
writes. For example, writing one 6000-byte buffer is generally more efficient than writing 1000 six-byte buffers. To achieve higher efficiencies,
the Enterprise Message API employs the concept of a high-water mark. When the application calls submit , the Enterprise Message API
does not always immediately pass the buffer to the transport; instead, the Enterprise Message API passes data to the transport after the size
of its buffer reaches the high-water mark.

For example, assume a high-water mark of 6144 bytes. If an application, creates a message, encodes 500 bytes of content, and passes this
to submit , the high-water mark will be triggered after thirteen buffers. At that point, the Enterprise Message API’s output queue will contain
thirteen buffers, each with approximately 500 bytes that it can pass to the underlying transport, instead of passing one at a time.

You can configure each individual connection’s high-water mark.

Note the throughput and latency implications. Balance the use of the high-water mark and flush by Enterprise Message API accordingly:

• In high-throughput situations, it is better to make large writes to achieve higher efficiencies (i.e., in this case use the high-water
mark).

• In low-throughput situations, data might linger in Enterprise Message API queues for longer periods and thus incur latency.

10 Performance Best Practices

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 61
EMAC380PETOO.240

10.2.4 Nagle’s Algorithm
For TCP socket connection types, you can set the underlying transport to use Nagle’s Algorithm to combine small content fragments into
larger network frames. While this algorithm reduces transport overhead (optimizing bandwidth usage), it also increases latency, especially
when sending small messages at lower data rates.

To minimize latency, the Performance Tools use TcpNodelay configuration parameter, which disables Nagle’s Algorithm.

10.2.5 System Send and Receive Buffers
For TCP socket connections, the OS uses system send and receive buffers for exchanging content. When the Enterprise Message API
flushes data to the underlying transport, it passes through these system buffers. During times of high throughput, the application might
provide data faster than the underlying transport can send it. If this happens, the system buffers can fill up, and as a result, the underlying
transport refuses to accept data. In this case, the transport accepts new data only after some of its buffered content is sent and
acknowledged.

If the user instructs the Enterprise Message API to pass queued data to the underlying transport but the OS cannot accept additional content
at the time, then the content must be queued in the Enterprise Message API and Enterprise Message API should flush it at a subsequent
time. However, this state is not considered a failure condition, and the Enterprise Message API still has the data in its buffers. In this
situation, the OP_WRITE selection key write file descriptor of the connection can be added to the, which notifies the application when it can
pass additional content to the OS.

You can configure the system’s send and receive buffer sizes in the OS, as detailed in OS-specific documentation. Additionally, the
Enterprise Message API allows users to configure this via SysSendBufSize and SysRecvBufSize configuration parameters in Channel or
Server group.

10 Performance Best Practices

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 62
EMAC380PETOO.240

10.2.6 Enterprise Message API Buffering
The Enterprise Message API uses various optimization techniques for efficient input and output of content, many revolving around pre-
allocated buffers which minimize memory creation and destruction. Pre-allocated buffers queue outbound data as well as read large byte-
streams from underlying transports.

When a connection is established, the maximum size buffer is negotiated, allowing the Enterprise Message API to create input and output
buffers that work well with respect to that connection. Because input and output strategies have different challenges, these pre-allocated
buffer pools are handled differently depending on whether they are input or output buffers.

10.2.6.1 Input Buffering
The Enterprise Message API input buffer is created as one large continuous block of memory, controlled by NumInputBuffers configuration
parameter in Channel or Server group. The number of bytes created in the input buffer is determined by the configured value multiplied by
the negotiated maxFragmentSize. Having one large block of memory allows dispatch call to get as many bytes from a single call to the
underlying transport as possible. When the input buffer holds data, the Enterprise Message API determines message boundaries and
returns a single message to the user. As the application makes subsequent dispatch calls, additional messages are dispatched from the
input buffer. After fully processing the input buffer, the Enterprise Message API goes back to the underlying transport to again fill the input
buffer.

The intent is to have the Enterprise Message API read only when needed and to read as much as possible. The amount of data the
Enterprise Message API actually reads from the network depends on the number of input buffers and the amount of data that the OS has
available at that time.

10.2.6.2 Output Buffering
Output buffering is handled differently from input buffering. Because each buffer can be written as a different priority, a continuous block of
memory will not work. The Enterprise Message API creates the configured number of buffers, treating each buffer as a separate entity. Such
a division allows the use of multiple buffers simultaneously, as well as allowing buffers to co-exist in different priority-based output queues.

You should configure the number of output buffers according to the application’s expected output load. The GuaranteedOutputBuffer
configuration parameter setting controls the number of output buffers available exclusively to that channel, where all of these buffers are
created up-front.

Increasing the number of output buffers can improve performance when sending high volumes. An application should be aware of trade-offs
of using too much memory and thus potentially slowing the process. If the receiving process cannot keep up with the send rate, a condition
can develop for the sender where all output buffers are in use, waiting to be transmitted.

10.2.6.3 Fragmentation
The negotiated maximum buffer size is the maximum size that the application will send in a single buffer. In cases where an application
encodes a message larger than the maximum, the requested size will be returned to the user. When the content passes to submit, the
Enterprise Message API fragments the content on behalf of the application, breaking apart larger content into individual buffers whose
individual sizes do not exceed the agreed upon maximum. On the receiving side, the Enterprise Message API reassembles the fragments
back into a single buffer containing all relevant content.

This transport level fragmentation incurs multiple copies and potential memory allocations. To avoid such overhead, applications should
ensure that the maximum buffer size specified by the MaxFragmentSize configuration parameter is large enough for commonly sent
messages to fit into a single buffer.

10 Performance Best Practices

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 63
EMAC380PETOO.240

10.2.7 Compression
The Enterprise Message API supports the use of data compression. Generally, compressing data reduces the amount of data passed to the
underlying transport. But compression has some drawbacks to consider:

• Compression requires additional processing.1

• Compression copies data: as the user-provided buffer is read by the compression algorithm, output data is compressed into a
different buffer. As a result, compression will generally require more buffers from the Enterprise Message API’s buffer pool.

10.3 Encoder and Decoder Best Practices

10.3.1 Single-Pass Encoding
Enterprise Message API encodes data so as to minimize copying. Thus, the application encoding process begins by starting with the top-
level container and working down in a linear fashion.

For example, when encoding a Market Price message, the message header is encoded, followed by the field list payload. After the payload
is encoded, message encoding is completed.

10.4 Other Practices: CPU Binding

Although the OS tries to balance its load intelligently across multi-core processors, you can improve performance by locking the threads of a
process to specific cores and CPUs. This lessens the likelihood of switching a thread from one core to another, which impacts processing
time and invalidates the cache that the thread has filled.

Each Enterprise Message API Performance Tool allows CPU binding through its respective -threads option. Refinitiv recommends that
you test different bindings for each tool to see which works best on each system.

1. Overhead will vary based on the type of compression used and the level of compression applied.

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 64
EMAC380PETOO.240

Appendix A Troubleshooting

A.1 Can’t Connect
There are many reasons why a consumer or provider might not be able to connect. Several common ones are listed below:

• Check the consumer’s and provider’s serviceName parameters. These must match. The consumer will wait until the service is available
and accepting requests.

• Check the Refinitiv Real-Time Advanced Data Hub (adhmon) and Refinitiv Real-Time Advanced Distribution Server (adsmon) to see
whether the desired service is up.

• Check the Refinitiv Real-Time Advanced Data Hub’s configuration to make sure that the provider’s host is listed in the hostList
configuration setting.

• Check that the provider is listening on the correct TCP Port.

• Check that the consumer is connecting to the correct hostName and TCP Port.

• In direct-connect mode, start the provider first, then start the consumer. Starting the consumer first results in a connection timeout, which
creates a (by default) 15 second delay until the client retries the connection attempt.

• When connecting through Refinitiv Real-Time Distribution System, check that the desired service is up on both the Refinitiv Real-Time
Advanced Data Hub and Refinitiv Real-Time Advanced Distribution Server before starting the consumer (or wait the appropriate amount
of time.) Starting the consumer too quickly results in a connection retry after (by default) 15 seconds.

A.2 Not Achieving Steady State
There are several reasons why a consumer might not reach a steady state:

• The steadyStateTime value may be too small. When publishing in latency mode or at high update rates, providers will take longer to
process image requests. For example, if steadyStateTime is set to 30s but the provider can publish only 2,500 images per second, the
consumer times out before it receives its 100,000 images.

• The provider might be overloaded. If the provider is publishing at or near 100% CPU for its configured update rate, it will be either unable
or barely able to service incoming image requests, which causes images to trickle back to the consumer.

• The consumer might be overloaded.

• If using a non-interactive provider application, the provider and consumer watchlists might not match, resulting in the consumer
application requesting items that never appear in the Refinitiv Real-Time Advanced Data Hub cache.

Enterprise Message API C++ Edition3.8.0.L1 - Open Source Performance Tools Guide 65
EMAC380PETOO.240

A.3 Consumer Tops Out but Not at 100% CPU
In some cases, when connecting to Refinitiv Real-Time Distribution System, the consumer appears to be overloaded even though no thread
is using the maximum CPU. Such a situation might be a symptom of a bottleneck on the Refinitiv Real-Time Advanced Distribution Server,
which can be resolved by increasing the size of the guaranteedOutputBuffers and maxOutputBuffers to 5,000 in distribution.cnf:

Figure 22. Refinitiv Real-Time Advanced Distribution Server distribution.cnf

While this may increase the overall throughput, it can also increase message latency.

A.4 Initial Latencies Are High
Initial latencies during startup and immediately following the transition to steady state might be high. At high update rates, the system
processes its entire overhead for updates plus all refresh traffic, resulting in an increased workload and higher latency. It can take several
seconds for the system to “settle” following the transition to steady state. Increasing the provider’s output buffers might help.

•

A.5 Latency values Are Very High

• Run the applications on the same machine.

• Use a reliable clock to gather timestamp information.

• Perform appropriate system-wide tuning.

• Consider packing messages into the same buffer. It is possible that the connection type cannot sustain the data rate when sent as
individual messages.

[...]

*ads*maxOutputBuffers : 5000

*ads*guaranteedOutputBuffers : 5000

[...]

© 2016 - 2024 Refinitiv. All rights reserved.

Republication or redistribution of Refinitiv content, including by framing or similar means, is prohibited
without the prior written consent of Refinitiv. 'Refinitiv' and the Refinitiv logo are registered trademarks
and trademarks of Refinitiv.

Any third party names or marks are the trademarks or registered trademarks of the relevant third party.

Document ID: EMAC380PETOO.240
Date of issue: April 2024

	1 Introduction
	1.1 About this Manual
	1.2 Audience
	1.3 Programming Language
	1.4 Acronyms and Abbreviations
	1.5 References
	1.6 Documentation Feedback
	1.7 Document Conventions
	1.7.1 Typographic
	1.7.2 Diagrams

	2 Open Source Performance Tool Suite Overview
	2.1 Overview
	2.2 Enterprise Message API Performance Tool Suite
	2.3 Package Contents
	2.3.1 Building
	2.3.2 Running

	2.4 What Is Measured and Reported
	2.4.1 Latency
	2.4.2 Throughput and Payload
	2.4.3 Image Retrieval Time
	2.4.4 CPU & Memory Usage
	2.4.4.1 CPU Usage Calculation
	2.4.4.2 Memory Usage Calculation

	2.5 Recorded Results and Output
	2.5.1 Summary File
	2.5.2 Statistics File
	2.5.3 Latency File

	3 Latency Measurement Details
	3.1 Time-slicing
	3.2 Latency

	4 Consumer Performance Tool
	4.1 Overview
	4.2 Threading and Scaling
	4.2.1 Consumer Lifecycle
	4.2.2 Application Flow Diagram

	4.3 Latency Measurement
	4.3.1 Consumer Latency
	4.3.2 Posting Latency

	4.4 EmaCppConsPerf Configuration Options
	4.5 Input
	4.5.1 EmaConfig.xml Examples
	4.5.1.1 Consumer Section
	4.5.1.2 Channel Section

	4.6 Output
	4.6.1 EmaCppConsPerf Summary File Sample
	4.6.2 EmaCppConsPerf Statistics File Sample
	4.6.3 EmaCppConsPerf Latency File Sample
	4.6.4 EmaCppConsPerf Console Output Sample

	5 Interactive Provider Performance Tool
	5.1 Overview
	5.2 Threading and Scaling
	5.3 Provider Lifecycle
	5.3.1 Application Flow Diagram

	5.4 Latency Measurement
	5.5 EmaCppIProvPerf Configuration Options
	5.6 Input Files
	5.6.1 EmaConfig.xml Examples
	5.6.1.1 IProvider Section
	5.6.1.2 The Server Section

	5.7 Output
	5.7.1 EmaCppIProvPerf Summary File Sample
	5.7.2 EmaCppIProvPerf Statistics File Sample
	5.7.3 EmaCppIProvPerf Console Output Sample

	6 Non-Interactive Provider Performance Tool
	6.1 Overview
	6.2 Threading and Scaling
	6.3 Non-Interactive Provider Lifecycle
	6.4 Latency Measurement
	6.5 EmaCppNIProvPerf Configuration Options
	6.6 Input Files
	6.6.1 EmaConfig.xml Examples
	6.6.1.1 NiProvider Section
	6.6.1.2 Channel Section

	6.7 Output
	6.7.1 EmaCppNIProvPerf Summary File Sample
	6.7.2 EmaCppNIProvPerf Statistics File Sample
	6.7.3 EmaCppNIProvPerf Console Output Sample

	7 Performance Measurement Scenarios
	7.1 Interactive Provider to Consumer, Through Refinitiv Real-Time Distribution System
	7.2 Interactive Provider to Consumer, Direct Connect
	7.3 Non-Interactive Provider to Consumer, Through Refinitiv Real-Time Distribution System
	7.4 Consumer Posting on the Refinitiv Real-Time Distribution System

	8 Input File Details
	8.1 Message Content File and Format
	8.1.1 Encoding Fields
	8.1.2 Sample Update Message
	8.1.3 Sample MarketByOrder Data

	8.2 Item List File
	8.2.1 Item Attributes
	8.2.2 Sample Item List File

	9 Output File Details
	9.1 Overview
	9.2 Output Files and Their Descriptions
	9.3 Latency File
	9.4 File Import

	10 Performance Best Practices
	10.1 Overview
	10.2 Enterprise Message API Best Practices
	10.2.1 dispatch
	10.2.2 submit
	10.2.3 High-water Mark
	10.2.4 Nagle’s Algorithm
	10.2.5 System Send and Receive Buffers
	10.2.6 Enterprise Message API Buffering
	10.2.6.1 Input Buffering
	10.2.6.2 Output Buffering
	10.2.6.3 Fragmentation

	10.2.7 Compression

	10.3 Encoder and Decoder Best Practices
	10.3.1 Single-Pass Encoding

	10.4 Other Practices: CPU Binding

	Appendix A Troubleshooting
	A.1 Can’t Connect
	A.2 Not Achieving Steady State
	A.3 Consumer Tops Out but Not at 100% CPU
	A.4 Initial Latencies Are High
	A.5 Latency values Are Very High

