
Document Version: RTSDK C/C++ v2.2.3.L1 Installation Guide
Date of issue: December 2024
Document ID: RTSC223IP.240

RTSDK C/C++ 2.2.3.L1

INSTALLATION GUIDE

1 Overview
RTSDK packages are specific to the product language (C/C++, C#, or Java) and include both the Enterprise Transport API
and Enterprise Message API products. This guide describes the procedures to install and build RTSDK C / C++, applying to
RTSDK versions 2.2.1.L1 and higher. Because installation steps are specific to the RTSDK as a whole, the instructions apply
to both Enterprise Transport and Enterprise Message APIs.

The RTSDK supports open sourcing and uses standards-based, freely-available open source tools to provide additional
flexibility and benefit.

Developers must use CMake to dynamically generate the build files.

2 Requirements and Limitations
Consider the following requirements and limitations before building RTSDK C/C++:

• The RTSDK C/C++ package uses Google Test in its unit tests. While the RTSDK automatically downloads Google Test
whenever you run its unit tests, Google Test requires Python. So if you want to run the RTSDK unit tests, you must ensure
you also have Python on your machine.

• The RTSDK C/C++ package requires CMake.

• LSEG does not support 32-bit builds in the Enterprise Message API.

• If you intend to use encrypted connections, you must also install OpenSSL.

• If you downloaded the RTSDK package from GitHub and run CMake, CMake automatically attempts to download needed
libraries from GitHub including the RTSDK binary pack. Thus, you must have an Internet connection for CMake to
successfully download the binaries in this manner.

• The RTSDK C/C++ package requires Python 3 to be installed.

Note: Version 1.2 and later RTSDK applications are more memory-use intensive when initializing the Enterprise Transport
API C library and when loading the dictionary.

Note: The package directory structure changed over time. For more information, see Section 5.

3 Obtaining RTSDK

RTSDK C/C++ v2.2.3.L1 Installation Guide 5
RTSC223IP.240

3 Obtaining RTSDK
You can obtain RTSDK C/C++ in the following ways:

• Download RTSDK from LSEG. For details, see Section 3.1.

• Obtain RTSDK from GitHub. For details, see Section 3.2.

If you download RTSDK from LSEG, please download two RRG packages: RTSDK RRG (platform and language specific) and
RTSDK BinaryPack RRG (contains libraries for all support platforms and languages). The BinaryPack RRG contains closed
source libraries which permit users to build and link all dependent libraries to have a fully function product. The cmake build
from RRG package does not automatically download the BinaryPack. To combine both RRG packages, see Section 3.1.1.

If you clone RTSDK from GitHub, the binary pack is downloaded automatically. For more information, see Section 3.2.2.

Once you obtained RTSDK, you can build RTSDK with CMake as described in Section 4.

3.1 Download RTSDK Packages from LSEG

Download the RRG and BinaryPack RRG packages from the following locations:

• LSEG Software Downloads page: https://myaccount.lseg.com/en/downloadcenter.

Search downloads for product family, “MDS - API”, and product, “Real-Time SDK”.

• Developer Community Portal: https://developers.lseg.com/en/api-catalog/real-time-opnsrc/rt-sdk-cc/downloads

For the RRG package, there are separate Linux and Windows library packages. The archive file names are in this format:
Real-Time-SDK-<version>.<platform>.rrg where <platform> may be “linux” or “win” for Windows.

Starting with version 2.2.1.L1, the BinaryPack content is available as a separate RRG package, requiring you to download and
extract two archives:

• RTSDK RRG package: Real-Time-SDK-<version>.<platform>.zip.

The extracted archive contains a setup directory with the package in this format: RTSDK-<version>.linux.rrg.tar.gz
or RTSDK-<version>.win.rrg.zip. This package contains prebuilt libraries for supported compilers for the platform
chosen.
Example: Download Real-Time-SDK-2.2.1.L1.win.zip which contains a setup directory containing the RTSDK-
2.2.1.L1.win.rrg.zip directory. Once extracted, RTSDK-2.2.1.L1.win.rrg directory contains prebuilt libraries.

• RTSDK BinaryPack RRG package: Real-Time-SDK-BinaryPack-<version>.zip.

The extracted archive contains a setup directory with the package in this format: RTSDK-BinaryPack-
<version>.rrg.zip. This package, once extracted, contains closed-source binaries. It is not platform specific and has
content for all flavors/platforms of API. You can use this package to build RTSDK examples.

3.1.1 Using Binary Pack to Build RTSDK
To build RTSDK examples, combine the content of both packages before doing a build.

 To combine content of the RRG and BinaryPack RRG:

1. Download and extract both packages as described in Section 3.1.

2. Place the RTSDK-BinaryPack-<version>.rrg directory into the RTSDK-<version>.win.rrg directory.

Note: To use the BinaryPack RRG package for building RTSDK examples, combine both packages as described in Section
4.1.1.

https://my.refinitiv.com/content/mytr/en/downloadcenter.html
https://developers.lseg.com/en/api-catalog/real-time-opnsrc/rt-sdk-cc/downloads

3 Obtaining RTSDK

RTSDK C/C++ v2.2.3.L1 Installation Guide 6
RTSC223IP.240

3. Rename RTSDK-BinaryPack-<version>.rrg to RTSDK-BinaryPack.

Example:

1. Download Real-Time-SDK-2.2.1.L1.win.zip and Real-Time-SDK-BinaryPack-2.2.1.L1.zip.

2. Extract content from the setup directory of each archive: RTSDK-2.2.1.L1.win.rrg and RTSDK-BinaryPack-2.2.1.L1.rrg.

3. Move the RTSDK-BinaryPack-2.2.1.L1.rrg directory into the RTSDK-2.2.1.L1.win.rrg directory.

4. Rename RTSDK-BinaryPack-2.2.1.L1.rrg to RTSDK-BinaryPack.

3.2 Obtain RTSDK from GitHub

To obtain RTSDK from GitHub, do one of the following:

• Download packages from GitHub

• Clone the GitHub repository

3.2.1 Download RTSDK Packages from GitHub
Download both source code and binary pack packages from the GitHub RTSDK releases page:

1. Browse to https://github.com/Refinitiv/Real-Time-SDK/releases.

2. From the Assets drop-down section, download the packages:

• RTSDK RRG package: Source code zip or tar.gz archive.

• RTSDK BinaryPack RRG package: RTSDK-BinaryPack-<version>.zip or tar.xz archive.

For information on Linux and Windows specific package formats and the packages content, see Section 3.1.

3.2.2 Clone GitHub Repository
Clone the RTSDK GitHub repository from https://github.com/Refinitiv/Real-Time-SDK.

To clone the repository, use the following command:

git clone https://github.com/Refinitiv/Real-Time-SDK.git

Note: An RTSDK clone built using CMake automatically downloads the RTSDK binary pack on behalf of the user,
assuming user has access to download from GitHub.

https://github.com/Refinitiv/Real-Time-SDK
https://github.com/Refinitiv/Real-Time-SDK/releases

4 Building RTSDK with CMake

RTSDK C/C++ v2.2.3.L1 Installation Guide 7
RTSC223IP.240

4 Building RTSDK with CMake
The RTSDK includes CMake configuration files (CMakeLists.txt) in strategic directories. You must use CMake to configure a
build tree. CMake generates cleaner, more concise build environment files that correspond to users’ platform and OS. In
addition, it enables the creation of build environments on platforms that users wish to leverage, even if unsupported by the
RTSDK product.

The RTSDK package includes a top-level, entry point for CMake (CMakeLists.txt), which CMake uses when you run the
program. From this master file, CMake processes all downstream CMakeLists.txt files in the source tree to generate
associated Solution and vcxproj files1 (on Windows), or Makefile files (on Linux) in a build directory that you specify. After
this process, you can compile your RTSDK in the same way as previous RTSDK versions (i.e., by running Make on Linux or by
using Visual Studio on Windows). For details on configuring the RTSDK with CMake, refer to Section 5.5.

For both Windows and Linux, starting in version 1.5.1 with the introduction of support for Visual Studio 2019, LSEG supports
only the use of CMake version 3.14 or later. Starting with version 2.0.8.L1, with the introduction of support for Visual Studio
2022, CMake version of 3.21 or later must be used. You can download CMake from https://cmake.org/download/.

4.1 Building on Windows

 To run CMake in a Windows environment:

1. Obtain RTSDK. For details, refer to Section 3.

2. If obtaining RTSDK by downloading RRG packages, extract the contents of the RTSDK packages as needed. Refer to
Section 3.

3. Note the name of the top-level extracted directory (i.e., on Windows, the name might be something like
RTSDK-2.2.1.L1.win.rrg or, if this is a GitHub clone, the name might be Real-Time-SDK).

The name of this extracted directory is referred to as sourceDir for the remainder of this procedure.

4. In Windows Explorer, navigate to the directory that contains sourceDir.

5. Press and hold down SHIFT, right-click the directory, and in the context menu, click Open command window here.

6. Issue the command:

Where:

• --help outputs a list of available command options and generator types.

• sourceDir is the directory in which the top-level CMake entry point (CMakeLists.txt) resides. By default, when you
build using the Solution and vcxproj files, output is sent to directory specified in SourceDir.

• buildDir is the CMake directory where built binaries are stored. This directory is created if it does not exist.

• VisualStudioVersion is the Visual Studio version (e.g., Visual Studio 11 2012 Win64). Valid values for
VisualStudioVersion are:

- “Visual Studio 17 2022” -A x64
- "Visual Studio 16 2019" -A x64

1. CMake refers to such files as ‘targets’

cmake --help | -HsourceDir -BbuildDir -G “VisualStudioVersion” [-Doption ...]

https://cmake.org/download/

4 Building RTSDK with CMake

RTSDK C/C++ v2.2.3.L1 Installation Guide 8
RTSC223IP.240

- "Visual Studio 15 2017 Win64"
- "Visual Studio 14 2015 Win64"

• option is a command line option and its associated value (e.g., -DBUILD_EMA_UNIT_TESTS=OFF). You can control
aspects of how CMake builds the RTSDK by using command line options (for further details on the use of options,
refer to Section 4.4).

The cmake command builds all needed Solution and vcxproj files (and other related files) in the CMake build directory and
may be built using Visual Studio. Compiled output (after running make or from visual studio make) is located in its associated
source directories (i.e., example executables are in the Executables directory and libraries (e.g., libema.lib, librssl.lib) in
the Libs directory).

4.2 Building on Linux

LSEG uses the default GNU compiler provided by CMake and included in the Linux distribution (which builds in 64-bit; to build
in 32-bit, refer to the CMake command options in Section 4.4). For supported OS and compilers, refer to the Compatibility
Matrix.

 To run CMake in a Linux environment:

1. Obtain RTSDK. For details, refer to Section 3.

2. If obtaining RTSDK by downloading RRG packages, extract the contents of the RTSDK packages as needed. Refer to
Section 3.

3. Note the name of the top-level extracted directory (i.e., on Linux, the name might be something like
RTSDK-2.2.1.L1.linux.rrg or, if this is a GitHub clone, the name might be Real-Time-SDK).

The name of this extracted directory is referred to as sourceDir for the remainder of this procedure.

4. At a command prompt (e.g., in a terminal window), issue the command from the directory immediately above sourceDir:

Note: • If you do not explicitly specify Win64, by default cmake builds the 32-bit version.

• A list of visual studio versions can be obtained by typing cmake --help

Note: Do not load individual project files from Visual Studio. You must first load the top-level solution file (rtsdk.sln in the
specified buildDir). After loading the full solution from rtsdk.sln, you can begin building individual projects.

Note: For Linux builds with RedHat-based distributions (RHEL, CentOS, Oracle Linux), the CMake scripts require lsb_release
software. On Red Hat Enterprise Linux and CentOS, when logged in as root, you can install lsb_release using the following
command: yum install redhat-lsb-core

cmake -HsourceDir -BbuildDir [-Doption ...]

Note: By default, CMake builds the RTSDK using the optimized build option. For the debug version, instead issue the
command: cmake -HsourceDir -BbuildDir –DCMAKE_BUILD_TYPE=Debug. In addition, on Linux platforms only,
to build the optimized debug version, use this command: cmake -HsourceDir -BbuildDir –
DCMAKE_BUILD_TYPE=OptimizedDebug.

4 Building RTSDK with CMake

RTSDK C/C++ v2.2.3.L1 Installation Guide 9
RTSC223IP.240

Where:

• sourceDir is the directory in which the top-level CMake entry point (CMakeLists.txt) resides. By default, when you
build using Makefile files, output is sent to directory specified in sourceDir.

• buildDir is the CMake binary directory (for the CMake build tree). This directory is created if it does not exist.

• option is a command line option and its associated value (e.g., -DBUILD_EMA_UNIT_TESTS=OFF). You can control
aspects of how CMake builds the RTSDK by using command line options (for further details on the use of options,
refer to Section 4.4).

The cmake command builds all needed Makefile files (and related dependencies) in the CMake build directory and may be
built using gmake/make. Compiled output is located in its associated source directories (i.e., example executables are in the
Executables directory and libraries (e.g., libema.lib, librssl.lib) in the Libs directory).

4.3 Rebuilding Library Packages (for Use with Developer Portal Downloads)

The RTSDK package that you obtain outside of GitHub (i.e., the Developer Portal) contains prebuilt libraries. However, you
might run into use cases that require you to rebuild libraries and/or your RTSDK API package. In normal use cases, where you
simply need to build the package, refer to Section 4.1 (for building on Windows) and Section 4.2 (for building on Linux).

You can rebuild the RTSDK API libraries in the following ways:

• If you need to rebuild the Enterprise Transport or Message API libraries, add the following option to the command line
when building. This option also rebuilds the external packages from the tarballs included in the download cache (external/
dlcache):

• If you need to rebuild everything (including external packages), ensure you have access to the Internet (in case a package
needs to be downloaded during the build), and add the following option to the command line when building. This option
does not use tarballs included in the download cache (external/dlcache) for building the external packages.

For detailed information on the options included in this section, refer to Section 4.4.

-DRTSDK_OPT_BUILD_ETA_EMA_LIBRARIES:BOOL=ON

-DRTSDK_OPT_REBUILD_ALL:BOOL=ON

https://developers.lseg.com/en/api-catalog/real-time-opnsrc/rt-sdk-cc

4 Building RTSDK with CMake

RTSDK C/C++ v2.2.3.L1 Installation Guide 10
RTSC223IP.240

4.4 CMake Build Configuration Options

When running the CMake command, you can use any of the following options:

Tip: If you want to only build the Enterprise Transport API library, turn off the following options:
BUILD_ETA_APPLICATIONS, BUILD_EMA_LIBRARY, and BUILD_EMA_EXAMPLES

OPTION DESCRIPTION DEFAULT
SETTING

BUILD_RTSDK-BINARYPACK Downloads needed libraries (as a tarball) from GitHub and
builds the RTSDK-BinaryPack. To use this option, you
must have Internet access (with any proxies specified).
If you downloaded your package from the Developer
Community Portal, this option skips the tarball download
and simply builds the RTSDK-BinaryPack.

On

BUILD_EMA_DOXYGEN Builds the Enterprise Message API reference
documentation using Doxygen.

Off

BUILD_EMA_EXAMPLES Builds all programs in Cpp-C/Ema/Examples. Turning this
option off also turns off BUILD_EMA_PERFTOOLS,
BUILD_EMA_TRAINING, and BUILD_UNIT_TESTS.

On

BUILD_EMA_LIBRARY Builds with the Enterprise Message API library (libema) On

BUILD_EMA_PERFTOOLS Builds all programs in Cpp-C/Ema/Examples/Perftools On

BUILD_EMA_TRAINING Builds all programs in Cpp-C/Ema/Examples/Training On

BUILD_EMA_UNIT_TESTS Builds all unit tests for the Enterprise Message API
(located in
Cpp-C/Ema/Examples/Test/UnitTest).

On

BUILD_ETA_APPLICATIONS The top-level control option for all Enterprise Transport API
Applications. Turning this option off also turns off
BUILD_ETA_EXAMPLES, BUILD_ETA_PERFTOOLS, and
BUILD_ETA_TRAINING.

On

BUILD_ETA_DOXYGEN Builds Enterprise Transport API reference documentation
using Doxygen.

Off

BUILD_ETA_EXAMPLES Builds all programs in
Cpp-C/Eta/Applications/Examples

On

BUILD_ETA_PERFTOOLS Builds all programs in
Cpp-C/Eta/Applications/Perftools

On

BUILD_ETA_TRAINING Builds all programs in Cpp-C/Eta/Applications/Training On

BUILD_ETA_UNIT_TESTS Builds all unit tests for Enterprise Transport API (located in
Cpp-C/Eta/TestTools/UnitTests).

On

Table 1: CMake Command Options

https://developers.lseg.com/en
https://developers.lseg.com/en

4 Building RTSDK with CMake

RTSDK C/C++ v2.2.3.L1 Installation Guide 11
RTSC223IP.240

BUILD_UNIT_TESTS Builds all unit test programs for both the Enterprise
Message API (located in Cpp-C/Ema/Examples/Test/
UnitTest) and Enterprise Transport API (located in Cpp-C/
Eta/TestTools/UnitTests). Turning this option off also
turns off BUILD_EMA_UNIT_TESTS and
BUILD_ETA_UNIT_TESTS.

On

BUILD_32_BIT_ETA Forces a 32-bit build. This option builds only the Enterprise
Transport API and its examples that do not require the
Binary Pack (thus VA examples such as VACons, VAProv,
VANIProv, and WatchlistCons are not built). Also turns off
the Enterprise Message API and associated examples.

Off

Note: This is used only for forcing 32-bit Linux builds.

Tip: To force a 32-bit build in Windows, leave out the
Win64 specification in the generator statement.

RTSDK_OPT_BUILD_WITH_PREBUILT_ETA_
EMA_LIBRARIES

Available only if you downloaded the RTSDK from the
Developer Community Portal. This option sets CMake to
build the RTSDK package using prebuilt Enterprise
Transport API and Enterprise Message API libraries.
This option does not rebuild the libraries themselves.

ON

RTSDK_OPT_BUILD_ETA_EMA_LIBRARIES Available only if you downloaded the RTSDK from the
Developer Community Portal. This option sets CMake to
rebuild the Enterprise Transport and Message API
libraries, the examples, and the applications, and then
rebuild the RTSDK package. To build external project
libraries, CMake uses the tarballs from the local download
cache (dlcache) in the RTSDK distribution.

OFF

RTSDK_OPT_REBUILD_ALL Available only if you downloaded the RTSDK from the
Developer Community Portal. This option sets CMake to
rebuild the entire RTSDK distribution. To build external
project libraries, CMake downloads the tarballs from the
Internet. To use this option, you must have Internet access
(with any proxies specified).

OFF

OPTION DESCRIPTION DEFAULT
SETTING

Table 1: CMake Command Options

https://developers.lseg.com/en
https://developers.lseg.com/en
https://developers.lseg.com/en

4 Building RTSDK with CMake

RTSDK C/C++ v2.2.3.L1 Installation Guide 12
RTSC223IP.240

4.5 Customizing the CMake Configuration

To customize your CMake build, you must configure the CMakeCache.txt file in the build directory (buildDir). You can edit this
file using either a text editor (i.e., vi) or the appropriate CMake UI2. After configuring the CMakeCache.txt file, for ease of use,
LSEG recommends you use the UI to reconfigure the CMake build. For details on using the CMake UI, refer to CMake’s
documentation (https://cmake.org/cmake/help/v3.10/).

If you use a text editor to alter the cache. you can update your CMake build tree simply by running the command:

4.6 CMake Targets

Running CMake generates targets (conceptually this includes Visual Studio projects when running on Windows) that you can
compile individually. CMake lists RTSDK-specific targets in stdout.3 You can use CMake build configuration options to control
the specific set of RTSDK targets generated by CMake (for details, refer to Section 4.4).

For example, when setting BUILD_ETA_PERFTOOLS=ON (this is the default), CMake configures the following targets:

• ConsPerf_shared

• ConsPerf

• NIProvPerf_shared

• NIProvPerf

• ProvPerf_shared

• ProvPerf

• TransportPerf_shared

• TransportPerf

When the RTSDK successfully completes the CMake configuration, any target can be built directly if it is included with the
configuration (e.g., make ConsPerf).

2. On Windows, the UI is accessed through the cmake-gui.exe binary. On Linux, you access the UI via the cmake-gui and a curses interface via a
Linux shell with the ccmake command.

cmake -HsourceDir -BbuildDir

3. For non-RTSDK targets, refer to CMake’s documentation and broader CMake developer community (both accessed from https://cmake.org/docu-
mentation).

https://cmake.org/cmake/help/v3.10/
https://cmake.org/documentation
https://cmake.org/documentation

5 Package Directory Changes

RTSDK C/C++ v2.2.3.L1 Installation Guide 13
RTSC223IP.240

5 Package Directory Changes
The following table compares the RTSDK package directory structure of versions prior to and starting with 2.2.1.L1. The
following changes were introduced into the structure over time:

• RTSDK version 1.2: Starting with this version, CMake support was introduced. This changed the directory structure to
include top-level CMake, Cpp-C, and other directories to support a build using CMake.

• RTSDK version 2.2.1: Starting with this version, the RTSDK RRG package no longer contains the binary pack. Instead, the
binary pack is provided as a separate BinaryPack RRG package, which is illustrated in the following table. For more
information, see Section 3.4. For how to prepare the binary pack to build RTSDK examples, see Section 3.1.1.

The installdb directory includes external libraries (including libcurl). Examples might need to set LD_LIBRARY_PATH for
Linux or make sure that the libraries are otherwise accessible for Windows (e.g., include the directory in %PATH%).

The following sections provide details of the package directory structure changes for specific versions.

STRUCTURE STARTING WITH RTSDK 1.2.0 STRUCTURE STARTING WITH RTSDK 2.2.1

RRG package: BinaryPack RRG package: RRG package:

Table 2: RTSDK C/C++ Package Structures

5 Package Directory Changes

RTSDK C/C++ v2.2.3.L1 Installation Guide 14
RTSC223IP.240

5.1 Starting in Version 1.2

Starting in version 1.2, the following changes were introduced:

• The CMake directory contains modules to support the CMake build harness.

• The RTSDK-BinaryPack presents libraries (prebuilt from non-open source code) as targets for the rest of the RTSDK to
use as linkable target objects. For details on accessing the binary pack, refer to the topic called Obtaining RTSDK.

• Previous libraries librsslRDM, librsslReactor, and librsslVAUtil are combined to a single library librsslVA.

• A new library librsslRelMcast is added (in RTSDK-BinaryPack/Cpp-C/Eta/Libs) to account for the shared reliable
multicast library. librsslRelMcast is dynamically loaded by librssl whenever Reliable Multicast transport is selected.

• DACS and ANSI libraries have been moved to directory RTSDK-BinaryPack/Cpp-C/Eta/Utils.

5.2 Starting in Version 1.3.1

Starting in version 1.3.1, ANSI is open-sourced:

• The ANSI library is located in Cpp-C/Eta/Libs.

• ANSI headers are located in Cpp-C/Eta/Include/ansi.

5.3 Starting in Version 1.5.0

RTSDK supports a WebSocket Transport and introduces support for either a RWF or JSON payload. Conversion from RWF to
JSON (and from JSON to RWF) is built into librssl and also available as a separate shared library.

5.4 Starting in Version 2.2.1

Starting from version 2.2.1.L1, the RTSDK source code with sample applications (examples) and the closed-source binary
pack are provided in separate packages:

• RTSDK RRG package

• RTSDK BinaryPack RRG package

The BinaryPack RRG package is not platform specific and has content for all flavors and platforms of RTSDK APIs.

Also, with version 2.2.1, you can build an OptimizedDebug version on Linux platforms. For more information, see Section 4.2.

© LSEG 2018 - 2024. All rights reserved.

Republication or redistribution of LSEG Data & Analytics content, including by framing or similar
means, is prohibited without the prior written consent of LSEG Data & Analytics. 'LSEG Data &
Analytics' and the LSEG Data & Analytics logo are registered trademarks and trademarks of LSEG
Data & Analytics.

Any third party names or marks are the trademarks or registered trademarks of the relevant third party.

Document ID: RTSC223IP.240
Date of issue: December 2024

5 Package Directory Changes

	1 Overview
	2 Requirements and Limitations
	3 Obtaining RTSDK
	3.1 Download RTSDK Packages from LSEG
	3.1.1 Using Binary Pack to Build RTSDK

	3.2 Obtain RTSDK from GitHub
	3.2.1 Download RTSDK Packages from GitHub
	3.2.2 Clone GitHub Repository

	4 Building RTSDK with CMake
	4.1 Building on Windows
	4.2 Building on Linux
	4.3 Rebuilding Library Packages (for Use with Developer Portal Downloads)
	4.4 CMake Build Configuration Options
	4.5 Customizing the CMake Configuration
	4.6 CMake Targets

	5 Package Directory Changes
	5.1 Starting in Version 1.2
	5.2 Starting in Version 1.3.1
	5.3 Starting in Version 1.5.0
	5.4 Starting in Version 2.2.1

