
Full_Product_Name and
Version (e.g: ATS V1.5)

Enterprise Message API
C++ Edition
3.9.0.L2
ENTERPRISE MESSAGE API DEVELOPERS GUIDE

Document Version: 3.9.0.L2
Date of issue: May 2025
Document ID: EMAC390L2UM.250

Legal Information
© LSEG 2015 - 2025. All rights reserved.

Republication or redistribution of LSEG Data & Analytics content, including by framing or similar means, is prohibited without the prior written
consent of LSEG Data & Analytics. ‘LSEG Data & Analytics’ and the LSEG Data & Analytics logo are registered trademarks and trademarks
of LSEG Data & Analytics.

Any software, including but not limited to: the code, screen, structure, sequence, and organization thereof, and its documentation are
protected by national copyright laws and international treaty provisions. This manual is subject to U.S. and other national export regulations.

LSEG Data & Analytics, by publishing this document, does not guarantee that any information contained herein is and will remain accurate
or that use of the information will ensure correct and faultless operation of the relevant service or equipment. LSEG Data & Analytics, its
agents, and its employees, shall not be held liable to or through any user for any loss or damage whatsoever resulting from reliance on the
information contained herein.
Enterprise Message API C++ Edition3.9.0.L2 – Enterprise Message API Developers Guide ii
EMAC390L2UM.250

Contents

Contents
1 Introduction .. 1
1.1 About this Manual ... 1
1.2 Audience ... 1
1.3 Programming Language.. 1
1.4 Acronyms and Abbreviations .. 1
1.5 References.. 2
1.6 Documentation Feedback ... 3
1.7 Document Conventions... 3

2 Product Overview... 4
2.1 Enterprise Message API Product Description ... 4
2.2 Product Documentation and Learning the Enterprise Message API... 4

2.2.1 Consumer Examples .. 5
2.2.2 Provider Examples.. 5

2.3 Product Architecture.. 6
2.3.1 Enterprise Message API Consumer Architecture ... 6
2.3.2 Enterprise Message API Provider Architecture .. 6
2.3.3 Enterprise Message API Codec Architecture ... 7
2.3.4 Enterprise Message API Error Handling... 7

2.4 Tunnel Streams... 8

3 OMM Containers and Messages ... 9
3.1 Overview ... 9
3.2 Classes ... 10

3.2.1 DataType Class .. 10
3.2.2 DataCode Class.. 10
3.2.3 Data Class .. 10
3.2.4 Msg Class ... 11
3.2.5 OmmError Class ... 11
3.2.6 TunnelStreamRequest and ClassOfService Classes ... 11

3.3 Working with OMM Containers ... 12
3.3.1 Example: Populating a FieldList Class ... 12
3.3.2 Example: Populating a Map Class Relying on the FieldList Memory Buffer .. 13
3.3.3 Example: Populating a Map Class Relying on the Map Class Buffer .. 13
3.3.4 Example: Extracting Information from a FieldList Class ... 14
3.3.5 Example: Application Filtering on the FieldList Class... 15
3.3.6 Example: Extracting FieldList information using a Downcast Operation .. 15

3.4 Working with OMM Messages .. 17
3.4.1 Example: Populating the GenericMsg with an ElementList Payload... 17
3.4.2 Example: Extracting Information from the GenericMsg Class.. 17
3.4.3 Example: Working with the TunnelStreamRequest Class... 18

4 Consumer Classes... 19
4.1 OmmConsumer Class... 19

4.1.1 Connecting to a Server and Opening Items.. 19
4.1.2 Opening Items Immediately After OmmConsumer Object Instantiation ... 20
4.1.3 Destroying the OmmConsumer Object... 20
4.1.4 Example: Working with the OmmConsumer Class... 20
4.1.5 Working with Items ... 20
4.1.6 Example: Working with Items ... 21
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide iii
EMAC390L2UM.250

Contents
4.1.7 Working with Tunnel Streams... 21
4.1.8 Example: Working with Tunnel Streams... 22

4.2 OmmConsumerClient Class.. 23
4.2.1 OmmConsumerClient Description .. 23
4.2.2 Example: OmmConsumerClient ... 23

4.3 OmmConsumerConfig Class .. 24
4.3.1 OmmConsumerConfig Description ... 24
4.3.2 Unencrypted Connections .. 24
4.3.3 Encrypted Connections... 24
4.3.4 HTTP Proxy Connections ... 25

5 Provider Classes .. 26
5.1 OmmProvider Class .. 26

5.1.1 Connecting to ADH and Submitting Items .. 26
5.1.2 Interactive Providers: Post OmmProvider Object Instantiation... 27
5.1.3 Non-Interactive Providers: Post OmmProvider Object Instantiation ... 27
5.1.4 Non-Interactive Providers: Encrypted Connections and HTTP Proxy Tunneling.................................... 27
5.1.5 Destroying the OmmProvider Object .. 27
5.1.6 Non-Interactive Example: Working with the OmmProvider Class... 28
5.1.7 Interactive Provider Example: Working with the OmmProvider Class .. 29
5.1.8 Interactive Provider Example: Handling Post Message.. 29
5.1.9 Interactive Provider Example: Handling RTT Responses from Consumer... 30
5.1.10 Working with Items ... 30
5.1.11 Packing with Providers ... 31

5.2 OmmProviderClient Class... 34
5.2.1 OmmProviderClient Description ... 34
5.2.2 Non-Interactive Example: OmmProviderClient ... 34
5.2.3 Interactive Example: OmmProviderClient... 35

5.3 OMMIProviderConfig... 37
5.4 OmmNiProviderConfig Class .. 37

6 Consuming Data from the Cloud .. 38
6.1 Overview ... 38
6.2 Encrypted Connections ... 38
6.3 Credential Management.. 38
6.4 Version 1 Authentication Using oAuth Password and Refresh_Token ... 39

6.4.1 Client_ID (AppKey) and Client Secret .. 39
6.4.2 Obtaining Initial Access and Refresh Tokens ... 39
6.4.3 Refreshing the Access Token and Sending a Login Reissue... 40

6.5 Version 2 Authentication Using OAuth Client Credentials .. 41
6.5.1 Configuring and Managing Version 2 Credentials .. 41
6.5.2 Version 2 OAuth Client Credentials Token Lifespan .. 41

6.6 Service Discovery ... 41
6.7 Consuming Market Data ... 43
6.8 HTTP Error Handling for Reactor Token Reissues ... 43
6.9 Cloud Connection Use Cases ... 44

6.9.1 Session Management Use Case .. 44
6.9.2 Query Service Discovery .. 44

6.10 Logging of Authentication and Service Discovery Interaction ... 45
6.10.1 Logged Request Information .. 45
6.10.2 Logged Response Information.. 45

7 Warm Standby Feature .. 46
7.1 Overview ... 46
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide iv
EMAC390L2UM.250

Contents
7.2 Warm Standby Modes... 46
7.3 Warm Standby Configuration and Feature Details.. 48

8 Preferred Host Feature .. 49
8.1 Preferred Host Reconnection Behavior Changes ... 49
8.2 Preferred Host Operation Steps.. 49

8.2.1 ChannelSet Behaviors with Preferred Host Options Enabled... 49
8.2.2 Warm Standby Configuration with Preferred Host Options Enabled .. 50

9 Request Routing .. 51
9.1 Administrative Domains Behaviors ... 51

9.1.1 Login Request Timer Handling and Login Response Aggregation... 52
9.1.2 Aggregated Login Elements ... 52
9.1.3 Scenarios for Receiving Aggregated Login Stream.. 53
9.1.4 Directory Request Timer Handling and Directory Response Aggregation.. 53
9.1.5 Dictionary Request Timer Handling .. 54

9.2 Service List.. 54
9.3 Item Request Routing and Recovery .. 55
9.4 Posting Messages... 56
9.5 Sending Generic Message.. 56
9.6 Session Channel Information from OmmConsumer and OmmConsumerEvent ... 56

10 Troubleshooting and Debugging.. 57
10.1 Enterprise Message API Logger Usage.. 57
10.2 Omm Error Client Classes .. 57

10.2.1 Error Client Description... 57
10.2.2 Example: Error Client.. 58

10.3 OmmException Class.. 59
10.4 Creating a DACSLOCK for Publishing Permission Data... 59
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide v
EMAC390L2UM.250

1 Introduction
1 Introduction

1.1 About this Manual

This document is authored by Enterprise Message API architects and programmers. Several of its authors have designed, developed, and

maintained the Enterprise Message API product and other LSEG products which leverage it.

This guide documents the functionality and capabilities of the Enterprise Message API C++ Edition. The Enterprise Message API can also
connect to and leverage many different LSEG and customer components. If you want the Enterprise Message API to interact with other
components, consult that specific component’s documentation to determine the best way to configure for optimal interaction.

1.2 Audience

This document provides detailed yet supplemental information for application developers writing to the Enterprise Message API.

1.3 Programming Language

The Enterprise Message API is written using the C++ programming language taking advantage of the object oriented approach to design

and development of API and applications.

1.4 Acronyms and Abbreviations

ACRONYM / TERM MEANING

ADH LSEG Real-Time Advanced Distribution Hub is the horizontally scalable service component within the LSEG Real-
Time Distribution System providing high availability for publication and contribution messaging, subscription
management with optional persistence, conflation and delay capabilities.

ADS LSEG Real-Time Advanced Distribution Server is the horizontally scalable distribution component within the LSEG
Real-Time Distribution System providing highly available services for tailored streaming and snapshot data,
publication and contribution messaging with optional persistence, conflation and delay capabilities.

API Application Programming Interface

ASCII American Standard Code for Information Interchange

Enterprise Message
API

The Enterprise Message API (EMA) is an ease of use, open source, Open Message Model API. EMA is designed
to provide clients rapid development of applications, minimizing lines of code and providing a broad range of
flexibility. It provides flexible configuration with default values to simplify use and deployment. EMA is written on top
of the Enterprise Transport API (ETA) utilizing the Value Added Reactor and Watchlist features of ETA.

Enterprise Transport
API (ETA)

Enterprise Transport API is a high performance, low latency, foundation of the LSEG Real-Time SDK. It consists of
transport, buffer management, compression, fragmentation and packing over each transport and encoders and
decoders that implement the Open Message Model. Applications written to this layer achieve the highest
throughput, lowest latency, low memory utilization, and low CPU utilization using a binary Rssl Wire Format when
publishing or consuming content to/from LSEG Real-Time Distribution Systems.

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol (Secure)

Table 1: Acronyms and Abbreviations
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 1
EMAC390L2UM.250

1 Introduction
1.5 References

• Enterprise Message API C++ Edition LSEG Domain Model Usage Guide

• API Concepts Guide

• Enterprise Message API C++ Edition Configuration Guide

• Enterprise Message API C++ Edition Developers Guide

• The LSEG Developer Community

•

JSON JavaScript Object Notation

JWK JSON Web Key. Defined by RFC 7517, a JWK is a JSON formatted public or private key.

JWKS JSON Web Key Set, This is a set of JWK, placed in a JSON array.

JWT JSON Web Token. Defined by RFC 7519, JWT allows users to create a signed claim token that can be used to
validate a user.

OMM Open Message Model

QoS Quality of Service

RDM Domain Model

DP Delivery Platform: this platform is used for REST interactions. In the context of Real-Time APIs, an API gets
authentication tokens and/or queries Service Discovery to get a list of Real-Time - Optimized endpoints using DP.

LSEG Real-Time
Distribution System

LSEG Real-Time Distribution System is LSEG’s financial market data distribution platform. It consists of the LSEG
Real-Time Advanced Distribution Server and LSEG Real-Time Advanced Distribution Hub. Applications written to
the LSEG Real-Time SDK can connect to this distribution system.

Reactor The Reactor is a low-level, open-source, easy-to-use layer above the Enterprise Transport API. It offers heartbeat
management, connection and item recovery, and many other features to help simplify application code for users.

RMTES A multi-lingual text encoding standard

RSSL Source Sink Library

RTT Round Trip Time, this definition is used for round trip latency monitoring feature.

RWF Rssl Wire Format, an LSEG proprietary binary format for data representation.

LDF-D Data Feed Direct

UML Unified Modeling Language

UTF-8 8-bit Unicode Transformation Format

ACRONYM / TERM MEANING

Table 1: Acronyms and Abbreviations
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 2
EMAC390L2UM.250

https://developers.lseg.com

1 Introduction
1.6 Documentation Feedback

While we make every effort to ensure the documentation is accurate and up-to-date, if you notice any errors, or would like to see more

details on a particular topic, you have the following options:

• Send us your comments via email at ProductDocumentation@lseg.com.

• Add your comments to the PDF using Adobe’s Comment feature. After adding your comments, submit the entire PDF to LSEG by
clicking Send File in the File menu. Use the ProductDocumentation@lseg.com address.

1.7 Document Conventions

This document uses the following types of conventions:

• C++ classes, methods, in-line code snippets, and types are shown in Courier New font.

• Parameters, filenames, tools, utilities, and directories are shown in Bold font.

• Document titles and variable values are shown in italics.

• When initially introduced, concepts are shown in Bold, Italics.

• Longer code examples are shown in Courier New font against a gray background. For example:

AppClient client;
 OmmConsumer consumer(OmmConsumerConfig().operationModel(

OmmConsumerConfig::UserDispatchEnum).host("localhost:14002").username("user"));
 consumer.registerClient(ReqMsg().domainType(MMT_MARKET_BY_PRICE).serviceName(

"DIRECT_FEED").name("BBH.ITC").privateStream(true), client);
 unsigned long long startTime = getCurrentTime();
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 3
EMAC390L2UM.250

mailto:productdocumentation@lseg.com
mailto:productdocumentation@lseg.com

2 Product Overview
2 Product Overview

2.1 Enterprise Message API Product Description

The Enterprise Message API is a data-neutral, multi-threaded, ease-of-use API providing access to OMM and RWF data. As part of the

LSEG Real-Time Software Development Kit, or RTSDK, the Enterprise Message API allows applications to consume and provide OMM data
at the message level of the API stack. The message level is set on top of the transport level which is handled by the Enterprise Transport
API.

The Enterprise Message API:

• Provides a set of easy-to-use and intuitive interfaces and features intended to aid in message-level application development. These
interfaces simplify the setting of information in and getting information from OMM containers and messages. Other interfaces abstract
the behavior of consumer-type and provider-type applications.

• Enables applications to source market data from, and provide it to, different components that support OMM and/or RWF (e.g. Real-
Time, LSEG Real-Time Distribution System, LSEG Real-Time Advanced Transformation Server, Data Feed Direct, etc).

• Leaves a minimal code footprint in applications written to it. The design of the Enterprise Message API and its interfaces allows
application development to focus more on the application business logic than on the usage of the Enterprise Message API.

• Includes training applications that provide basic, yet still functional, examples of Enterprise Message API applications.

• Presents applications with simplified access to OMM messages and containers while providing all necessary transport level
functionalities. Generally, Enterprise Message API applications are meant to process market data items (e.g. open and receive item
data or provide item data).

• Abstracts and hides all the transport level functionality minimizing application involvement to just optional transport level configuration
and server address specification.

• Provides simple set- and get-type functionality to populate and read OMM containers and messages. Enterprise Message API takes
advantage of fluent interface design, which users can leverage to set disparate values of the same message or container by stringing
respective interface methods together, one after the other. Fluent interfaces provide the means for visual code simplification which helps
in understanding and debugging applications.

Transport level functionality is abstracted, specialized, and encapsulated by the Enterprise Message API in a few classes whose functionality
is implied by their class name.

2.2 Product Documentation and Learning the Enterprise Message API

When learning the Enterprise Message API, LSEG recommends you set up a sandbox environment where developers can experiment with

various iterations of Enterprise Message API applications. Enterprise Message API is designed to facilitate a hands-on (experiment-based)
learning experience (versus a documentation-based methodology). To support a hands-on learning methodology, the Enterprise Message
API package provides a set of training examples which showcase the usage of Enterprise Message API interfaces in increasing levels of
complexity and sophistication. While coding and debugging applications, developers are encouraged to refer to the Enterprise Message API
C++ Edition Reference Manual and/or to the features provided by their IDE (e.g., IntelliSense).

NOTE: Enterprise Message API application developers should already be familiar with OMM and Market Data distribution systems.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 4
EMAC390L2UM.250

2 Product Overview
2.2.1 Consumer Examples

The complexity of a consumer example is reflected in its series number as follows:

• 100-series examples simply open an item and print its received content to the screen (using the Data::toString() method).
Applications in this series illustrate Enterprise Message API support for stringification, containers, and primitives. Though useful for
learning, debugging, and writing display applications, stringification by itself is not sufficient to develop more sophisticated applications.

• The 200-series examples illustrate how to extract information from OMM containers and messages in native data formats, (e.g., UInt64,
EmaString, and EmaBuffer).

• The 300- and 400- series examples depict usage of particular Enterprise Message API features such as posting, generic message,
programmatic configuration, and etc.

2.2.2 Provider Examples

The complexity of an example is reflected in its series number. Each provider type (i.e., non-interactive versus interactive) has its own

directory structure in the product package:

• 100-series examples simply create streaming items and submit their refreshes and updates. Applications in this series use the
hardcoded Enterprise Message API configuration.

• The 200-series examples showcase the submission of multiple, streaming items from different market domains. Applications in this
series use the EmaConfig.xml file to modify its configuration.

• The 300- and 400- series examples depict usage of particular Enterprise Message API features such as user control of the source
directory domain, login streaming, connection recovery, programmatic configuration, and etc.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 5
EMAC390L2UM.250

2 Product Overview
2.3 Product Architecture

2.3.1 Enterprise Message API Consumer Architecture

The Enterprise Message API incorporates the ValueAdded Reactor component (called the Transport API VA Reactor) from the Transport
API, which provides the watchlist and transport-level functionality. The Enterprise Message API wraps up the reactor component in its own
class of OmmConsumer. OmmConsumer provides interfaces to open, modify, and close market items or instruments, as well as submit Post
and Generic messages. To complete the set of consumer application functionalities, the OmmConsumer class provides the dispatch()
method. Depending on its design and configuration, an application might need to call this method to dispatch received messages. The
OmmConsumerConfig class configures the reactor and OmmConsumer.

The OmmConsumerClient class provides the callback mechanism for Enterprise Message API to send incoming messages to the
application. The application needs to implement a class inheriting from the OmmConsumerClient class to receive and process messages.
By default, OmmConsumerClient callback methods are executed in Enterprise Message API's thread of control. However, you can use the
OmmConsumerConfig::operationModel() interface to execute callback methods on the application thread. If you choose to execute
callback methods in this manner, the application must also call the OmmConsumer::dispatch() method to dispatch received messages.

The Enterprise Message API consumer will always have at least one thread, which is implemented by the VA Reactor and runs the internal,
VA Reactor logic. For details on this thread, refer to the Transport API C++ Edition Value Added Component Developers Guide. Additionally,
you can configure the Enterprise Message API to create a second, internal thread to dispatch received messages. To create a second
thread, set the OmmConsumerConfig operation model to OmmConsumerConfig::ApiDispatchEnum. If the OmmConsumerConfig
operation model is set to the OmmConsumerConfig::UserDispatch, the Enterprise Message API will not run a second thread. Without
running a second thread, the application is responsible for calling the Ommconsumer::dispatch() method to dispatch all received
messages.

2.3.2 Enterprise Message API Provider Architecture

The Enterprise Message API provider incorporates the Value Added (VA) Reactor component from the EnterpriseTransport API, which
provides transport-level functionality. The Enterprise Message API wraps the reactor component in its own class of OmmProvider.
OmmProvider provides interfaces to submit item messages as well as handling login, directory, and dictionary domains (depending on
Enterprise Message API’s specific provider role). To complete the set of provider functionalities, the OmmProvider class provides the
dispatch() method. Depending on its design and configuration, an application might need to call this method to dispatch received
messages. The provider configuration class (i.e., OmmNiProviderConfig or OmmIProviderConfig) class configures both the reactor
and OmmProvider.

Enterprise Message API sends incoming messages to the application using the OmmProviderClient callback mechanism. To receive and
process messages, the application needs to implement a class that inherits from the OmmProviderClient class. By default,
OmmProviderClient callback methods are executed in Enterprise Message API's thread of control. However, you can use either the
OmmNiProviderConfig::operationModel() or OmmIProviderConfig::operationModel() interface to execute callback
methods on the application’s thread, in which case the application must also call the OmmProvider::dispatch() method to dispatch
received messages.

An Enterprise Message API provider must always have at least one thread, which is implemented by the VA Reactor and runs the internal,
VA Reactor logic. For details on this thread, refer to the Transport API C++ Edition Value Added Component Developers Guide. Additionally,
you can configure Enterprise Message API to create a second internal thread over which to dispatch received messages:

• For non-interactive providers, set the OmmNiProviderConfig operation model to OmmNiProviderConfig::ApiDispatchEnum. If
the operation model is set to OmmNiProviderConfig::UserDispatchEnum, Enterprise Message API will not run a second thread.

• For interactive providers, set the OmmIProviderConfig operation model to OmmIProviderConfig::ApiDispatchEnum. If the
operation model is set to OmmIProviderConfig::UserDispatchEnum, Enterprise Message API will not run a second thread.

Without running a second thread, the application is responsible for calling the OmmProvider::dispatch() method to dispatch all
received messages.

WARNING! If the application delays in dispatching messages, it can result in slow consumer behavior.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 6
EMAC390L2UM.250

2 Product Overview
The Enterprise Message API provider includes an internal, hard-coded, and configurable initial source directory refresh message. The
application can either use the internal hard-coded source directory, configure its own internal one via the EmaConfig.xml file, or
programmatically create one and/or disable the internal one. To disable the internal source directory message:

• When running Enterprise Message API as a non-interactive provider: the application must set
OmmNiProviderConfig::UserControlEnum through the OmmNiProviderConfig::adminControlDirectory() method.

• When running Enterprise Message API as an interactive provider: the application must set
OmmIProviderConfig::UserControlEnum through the OmmIProviderConfig::adminControlDirectory() method.
Additionally, you can configure the ability to disable internal dictionary responses by setting
OmmIProviderConfig::UserControlEnum through the OmmIProviderConfig::adminControlDictionary() method.

An Enterprise Message API provider also supports the programmatic configuration of a source directory refresh of dictionary information,
which overrides any configuration in EmaConfig.xml. To programmatically configure a source directory refresh:

• When running Enterprise Message API as a non-interactive provider: the application must set
OmmNiProviderConfig::ApiControlEnum through the OmmNiProviderConfig::adminControlDirectory() method.
An Enterprise Message API non-interactive provider does not support programmatically configuring dictionary information.

• When running Enterprise Message API as an interactive provider: the application must set
OmmIProviderConfig::ApiControlEnum through the OmmIProviderConfig::adminControlDirectory() method.
Additionally, you can programmatically configure dictionary information, which overrides any dictionary information defined from
EmaConfig.xml. To programmatically configure dictionary information, set OmmIProviderConfig::ApiControlEnum through
the OmmIProviderConfig::adminControlDictionary() method.

2.3.3 Enterprise Message API Codec Architecture

The Enterprise Message API Codec uses the Enterprise Transport API decoding and encoding functions to read and populate OMM
containers and messages. Each OMM container and message is represented by a respective Enterprise Message API interface class, which
provides relevant methods for setting information on, and accessing information from, these containers and messages. All classes
representing OMM containers, messages, and primitives inherit from the common parent class of Data. Through such inheritance, classes
provide the same basic, common, and easy to use functionality that applications might expect from them (e.g., printing contained data using
toString()).

2.3.4 Enterprise Message API Error Handling

The Enterprise Message API interfaces are designed to throw exceptions when encountering error scenarios: OmmConsumer and
OmmProvider classes throw an OmmException. For details on exception types, refer to Section 10.3. For which exceptions are thrown by
each class, refer to the Reference Manual.

The Enterprise Message API application must catch exceptions and take appropriate actions. Notably, exceptions related to decoding or
encoding content must be caught with appropriate try and catch blocks in callbacks or wherever decoding or encoding takes place. Decoding
methods to retrieve content may result in exceptions if the content is not present within the message. It is best practice to check for a field’s
existence prior to accessing content.

While the OmmConsumer and OmmProvider classes throw an OmmException to report an error condition, the
OmmConsumerErrorClient class provides an alternate reporting mechanism via callbacks. To use the alternate error reporting, pass the
OmmConsumerErrorClient on the constructor of the OmmConsumer class, which switches the error reporting from exception throwing to
callbacks. Similarly, passing in OmmProviderErrorClient on the constructor of the OmmProvider class switches reporting error to the
callbacks. Refer to Section 10.2.2 for sample code to set error callbacks such as onInvalidHandle, onSystemError, etc. When using
API dispatch, the recommendation is to use callbacks for receiving errors by passing in ErrorClient. In addition to its error reporting
mechanisms, Enterprise Message API provides a logger mechanism which is useful in monitoring Enterprise Message API behavior and
debugging any issues that might arise.

NOTE: If the user control is enabled, the application is responsible for sending the response messages.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 7
EMAC390L2UM.250

2 Product Overview
2.4 Tunnel Streams

By leveraging the Transport API Value Added Reactor, the Enterprise Message API allows users to create and use special tunnel streams. A
tunnel stream is a private stream that has additional behaviors associated with it, such as end-to-end line of sight for authentication and
reliable delivery. Because tunnel streams are founded on the private streams concept, these are established between consumer and
provider endpoints and then pass through intermediate components, such as LSEG Real-Time Distribution System or the LSEG Real-Time
Edge Device.

The user creating the tunnel stream sets any additional behaviors to enforce, which Enterprise Message API sends to the provider
application end point. The provider endpoint acknowledges the creation of the stream as well as the behaviors it will enforce on the stream.
Once this is accomplished, negotiated behaviors are enforced on the content exchanged via the tunnel stream.

The tunnel stream allows for multiple substreams to exist, where substreams flow and coexist within the confines of a specific tunnel stream.
In the following diagram, imagine the tunnel stream as the orange cylinder that connects the consumer application and the Provider
application. Notice that this passes directly through any intermediate components. The tunnel stream has end-to-end line of sight so the
Provider and Consumer are effectively talking to each other directly, although they are traversing multiple devices in the system. Each of the
black lines flowing through the cylinder represent a different substream, where each substream is its own independent stream of information.
Each of these could be for different market content, for example one could be a Time Series request while another could be a request for
Market Price content. The substreams established over a tunnel stream are not managed by tunnel stream handling in the APIs: this must be
handled by the application. Example: if application chooses to do posting over tunnel stream, the API allows for easily constructing a post
and sending it over tunnel streams but does not manage receipt of ACK messages.

Figure 1. Tunnel Stream
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 8
EMAC390L2UM.250

3 OMM Containers and Messages
3 OMM Containers and Messages

3.1 Overview

Enterprise Message API supports a full set of OMM containers, messages, and primitives (e.g. FieldList, Map, RefreshMsg, Int). For

simplicity, Enterprise Message API uses:

• The “set / add” type of functionality to populate OMM containers, messages, and primitives

• Set functionality is used to specify variables that occur once in an OMM container or message.

• Add functionality is used to populate entries in OMM containers.

• Set and add type methods return a reference to the modified object (for fluid interface usage).

• The “get” type of functionality to read and extract data from OMM containers, messages, and primitives.Enterprise Message API uses a
simple iterative approach to extract entries from OMM containers, one at a time. Applications iterate over every OMM container type in
the same way.

While iterating, an application can apply a filtering mechanism. For example, while iterating over a FieldList, the application can specify a
field ID or field name in which it is interested; the Enterprise Message API skips entries without matching identification. Individual container
entries are extracted during iteration. Depending on the container type, the entry may contain:

• Its own identity (e.g., field id)

• An action to be applied to the received data (e.g., add action)

• Permission information associated with the received data

• An entry’s load and its data type.

The Enterprise Message API has two different ways of extracting an entry’s load:

• Use ease-of-use interfaces to return references to contained objects (with reference type being based on the load’s data type)

• Use the getLoad interface to return a reference to the base Data class. The getLoad interface enables more advanced applications
to use the down-cast operation (if desired).

For details on ease of use interfaces and the down-cast operation, refer to Section 3.3.

To provide compile time-type safety on the set-type interfaces, Enterprise Message API provides the following, deeper inheritance structure:

• All classes representing primitive / intrinsic data types inherit from the Data class (e.g. OmmInt, OmmBuffer, OmmRmtes, etc.).

• OmmArray class inherits from the Data class. The OmmArray is treated as a primitive instead of a container, because it represents a set
of primitives.

• OmmError class inherits from the Data class. OmmError class is not an OMM data type.

• All classes representing OMM containers (except OmmArray) inherit from the ComplexType class, which in turn inherits from the Data
class (e.g., OmmXml, OmmOpaque, Map, Series, or Vector).

• All classes representing OMM messages inherit from the Msg class, which in turn inherits from the ComplexType class (e.g.,
RefreshMsg, GenericMsg, or PostMsg).
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 9
EMAC390L2UM.250

3 OMM Containers and Messages
3.2 Classes

3.2.1 DataType Class

The DataType class provides the set of enumeration values that represent each and every supported OMM data type, including all OMM
containers, messages, and primitives. Each class representing OMM data identifies itself with an appropriate DataType enumeration value
(e.g., DataType::FieldListEnum, DataType::RefreshMsgEnum). You can use the Data::getDataType() method to learn the
data type of a given object.

The DataType class list of enumeration values contains two special enumeration values, which can only be received when reading or
extracting information from OMM containers or messages:

• DataType::ErrorEnum, which indicates an error condition was detected. For more details, refer to Section 3.2.5.

• DataType::NoDataEnum, which signifies a lack of data on the summary of a container, message payload, or attribute.

3.2.2 DataCode Class

The DataCode class provides two enumeration values that indicate the data’s state:

• The DataCode::NoCodeEnum indicates that the received data is valid and application may use it.

• The DataCode::BlankEnum indicates that the data is not present and application needs to blank the respective data fields.

3.2.3 Data Class

The Data class is a parent abstract class from which all OMM containers, messages, and primitives inherit. Data provides interfaces
common across all its children, which in turn enables down-casting operations. The Data class and all classes that inherit from it are
optimized for efficiency and built so that data can be easily accessed. Though all primitive data types are represented by classes that inherit
from the Data class, the ease-of-use interfaces do not return such references: all primitive data types are returned by their intrinsic
representation.

The Enterprise Message API does not support immediately retrieving data from freshly created OMM containers or messages. The following
code snippet demonstrates this restriction:

WARNING! The Data class and all classes that inherit from it are designed as temporary and short-lived objects. For this reason, do
not use them as storage or caching devices.

FieldList fieldList;

fieldList.addAscii(1, "ascii").addInt(10, 20).complete();

while (fieldList.forth())

{

const FieldEntry& fieldEntry = fieldList.getEntry();

...

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 10
EMAC390L2UM.250

3 OMM Containers and Messages
3.2.4 Msg Class

The Msg class is a parent class for all the message classes. It defines all the interfaces that are common across all message classes.

3.2.5 OmmError Class

The OmmError class is a special purpose class. It is a read only class implemented in the Enterprise Message API to notify applications
about errors detected while processing received data. This class enables applications to learn what error condition was detected.
Additionally it provides the getAsHex() method to obtain binary data associated with the detected error condition. The sole purpose of this
class is to aid in debugging efforts.

The following code snippet presents usage of the OmmError class while processing ElementList.

3.2.6 TunnelStreamRequest and ClassOfService Classes

The TunnelStreamRequest class specifies request information for use in establishing a tunnel stream. A tunnel stream is a private stream

that provides additional functionalities such as user authentication, end-to-end flow control and reliable delivery. You can configure these
features on a per-tunnel stream basis. The ClassOfService class specifies these features and some other related parameters. The
identity of the tunnel stream is specified on the TunnelStreamRequest class.

void decode(const ElementList& elementList)

{

while (elementList.forth())

{

const ElementEntry& elementEntry = elementList.getEntry();

if (elementEntry.getCode() == Data::BlankEnum)

continue;

else

switch (elementEntry.getLoadType())

{

case DataType::RealEnum:

cout << elementEntry.getReal().getAsDouble() << endl;

break;

case DataType::ErrorEnum:

cout << elementEntry.getError().getErrorCode() << "(" <<

elementEntry.getError().getErrorCodeAsString() << ")" << endl;

break;

}

}

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 11
EMAC390L2UM.250

3 OMM Containers and Messages
3.3 Working with OMM Containers

Enterprise Message API supports the following OMM containers: ElementList, FieldList, FilterList, Map, Series, and Vector.

Each of these classes provides set type interfaces for container header information (e.g., dictionary id, element list number, and the add-type
interfaces for adding entries). You must set the container header and optional summary before adding the first entry.

Though it is treated as an OMM primitive, the OmmArray acts like a container and therefore provides add-type interfaces for adding primitive
entries.

3.3.1 Example: Populating a FieldList Class

The following example illustrates how to populate a FieldList class with fluid interfaces.

NOTE: OMM Container classes do perform some validation of their usage. If a usage error is detected, an appropriate OmmException will
be thrown.

try {

FieldList fieldList;

fieldList.info(1, 1)

.addUInt(1, 64)

.addReal(6, 11, OmmReal::ExponentNeg2Enum)

.addDate(16, 1999, 11, 7)

.addTime(18, 02, 03, 04, 005)

.complete();

} catch (const OmmException & excp) {

cout << excp << endl;

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 12
EMAC390L2UM.250

3 OMM Containers and Messages
3.3.2 Example: Populating a Map Class Relying on the FieldList Memory Buffer

The following code snippet illustrates how to populate a Map class with summary data and a single entry containing a FieldList. In this
example, the FieldList class uses its own memory buffer to store content while it is populated. This buffer later gets copied to the buffer
owned by the Map class. This container population model applies to all OMM containers that might contain other containers, primitives, or
messages.

3.3.3 Example: Populating a Map Class Relying on the Map Class Buffer

The following example illustrates how to populate a Map class with a single entry containing a FieldList. In this case, the FieldList
class uses the memory buffer owned by the Map class to store its own content while it is populated, therefore avoiding the internal buffer
copy described in Section 3.3.2. This container population model applies to iterable containers only (e.g., OmmArray, ElementList, FieldList,
FilterList, Map, Series, and Vector).

try {

FieldList fieldList;

fieldList.addUInt(1, 64)

.addReal(6, 11, OmmReal::ExponentNeg2Enum)

.addDate(16, 1999, 11, 7)

.addTime(18, 02, 03, 04, 005)

.complete();

Map map;

map .summary(fieldList).addKeyAscii("entry_1", MapEntry::AddEnum, fieldList

).complete();

} catch (const OmmException& excp) {

cout << excp << endl;

}

try {

 FieldList fieldList;

 Map map;

 fieldList.addUInt(1, 64)

 .addReal(6, 11, OmmReal::ExponentNeg2Enum)

 .addDate(16, 1999, 11, 7)

 .addTime(18, 02, 03, 04, 005)

 .complete();

 map.addKeyAscii("entry_1", MapEntry::AddEnum, fieldList);

 map.complete();

} catch (const OmmException& excp) {

 cout << excp << endl;

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 13
EMAC390L2UM.250

3 OMM Containers and Messages
3.3.4 Example: Extracting Information from a FieldList Class

In the following example illustrates how to use the FieldList::forth() method to extract information from the FieldList class by
iterating over the class. The following code extracts information about all entries.

void decode(const FieldList& fieldList)

{

 if (fieldList.hasInfo())

 {

 Int16 dictionaryId = fieldList.getInfoDictionaryId();

 Int16 fieldListNum = fieldList.getInfoFieldListNum();

 }

 while (fieldList.forth())

 {

 const FieldEntry& fieldEntry = fieldList.getEntry();

 if (fieldEntry.getCode() == Data::BlankEnum)

 continue;

 switch (fieldEntry.getLoadType())

 {

 case DataType::AsciiEnum :

 const EmaString& value = fieldEntry.getAscii();

 break;

 case DataType::IntEnum :

 Int64 value = fieldEntry.getInt();

 break;

 }

 }

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 14
EMAC390L2UM.250

3 OMM Containers and Messages
3.3.5 Example: Application Filtering on the FieldList Class

In the following code snippet application filters or extracts select information from FieldList class. The FieldList::forth(Int16) method is used
to iterate over the FieldList class. In this case only entries with field id of 22 will be extracted; all the other ones will be skipped.

3.3.6 Example: Extracting FieldList information using a Downcast Operation

The following example illustrates how to extract information from a FieldList object using the down-cast operation.

void decode(const FieldList& fieldList)

{

while (fieldList.forth(22))

{

const FieldEntry& fieldEntry = fieldList.getEntry();

if (fieldEntry.getCode() == Data::BlankEnum)

continue;

switch (fieldEntry.getLoadType())

{

case DataType::AsciiEnum :

const EmaString& value = fieldEntry.getAscii();

break;

case DataType::IntEnum :

Int64 value = fieldEntry.getInt();

break;

}

}

}

void AppClient::decodeFieldList(const FieldList& fl)

{

if (fl.hasInfo())

cout << "FieldListNum: " << fl.getInfoFieldListNum() << " DictionaryId: " << fl

fl.getInfoDictionaryId() << endl;

while (fl.forth())

}

cout << "Load" << endl;

decode(fl.getEntry().getLoad());

}

}

void AppClient::decode(const Data& data)

{

if (data.getCode() == Data::BlankEnum)

cout << "Blank data" << endl;

else

switch (data.getDataType())
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 15
EMAC390L2UM.250

3 OMM Containers and Messages
{

case DataType::RefreshMsgEnum :

decodeRefreshMsg(static_cast<const RefreshMsg&>(data));

break;

case DataType::UpdateMsgEnum :

decodeUpdateMsg(static_cast<const UpdateMsg&>(data));

break;

case DataType::FieldListEnum :

decodeFieldList(static_cast<const FieldList&>(data));

break;

case DataType::MapEnum :

decodeMap(static_cast<const Map&>(data));

break;

case DataType::NoDataEnum :

cout << "NoData" << endl;

break;

case DataType::TimeEnum :

cout << "OmmTime: " << static_cast<const OmmTime&>(data).toString() << endl;

break;

case DataType::DateEnum :

cout << "OmmDate: " << static_cast<const OmmDate&>(data).toString() << endl;

break;

case DataType::RealEnum :

cout << "OmmReal::getAsDouble: " << static_cast<const OmmReal&>(data

).getAsDouble() << endl;

break;

case DataType::IntEnum :

cout << "OmmInt: " << static_cast<const OmmInt&>(data).getInt() << endl;

break;

case DataType::UIntEnum :

cout << "OmmUInt: " << static_cast<const OmmUInt&>(data).getUInt() << endl;

break;

case DataType::EnumEnum :

cout << "OmmEnum: " << static_cast<const OmmEnum&>(data).getEnum() << endl;

break;

case DataType::AsciiEnum :

cout << "OmmAscii: " << static_cast<const OmmAscii&>(data).toString() << endl;

break;

case DataType::ErrorEnum :

cout << "Decoding error: " << static_cast<const OmmError&>(data

).getErrorCodeAsString() << endl;

break;

default :

break;

}

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 16
EMAC390L2UM.250

3 OMM Containers and Messages
3.4 Working with OMM Messages

Enterprise Message API supports the following OMM messages: RefreshMsg, UpdateMsg, StatusMsg, AckMsg, PostMsg and
GenericMsg. As appropriate, each of these classes provide set and get type interfaces for the message header, permission, key, attribute,
and payload information.

3.4.1 Example: Populating the GenericMsg with an ElementList Payload

The following example illustrates how to populate a GenericMsg with a payload consisting of an ElementList.

3.4.2 Example: Extracting Information from the GenericMsg Class

The following example illustrates how to extract information from the GenericMsg class.

try {

GenericMsg genMsg;

genMsg.domainType(200).name("TR.N").serviceId(234).payload(ElementList().addAscii(

"entry_1", "value_1").complete());

} catch (const OmmException& excp) {

cout << excp << endl;

}

void decode(const GenericMsg& genMsg)

{

if (genMsg.hasName())

cout << endl << "Name: " << genMsg.getName();

if (genMsg.hasHeader())

const EmaBuffer& header = genMsg.getHeader();

switch (genMsg.getPayload().getDataType())

{

case DataType::FieldListEnum :

decode(genMsg.getPayload().getFieldList());

break

}

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 17
EMAC390L2UM.250

3 OMM Containers and Messages
3.4.3 Example: Working with the TunnelStreamRequest Class

The following code snippet demonstrates using the TunnelStreamRequest class in the consumer application to open a tunnel stream.

CosAuthentication cosAuthentication;

cosAuthentication.type(CosAuthentication::OmmLoginEnum);

CosDataIntegrity cosDataIntegrity;

cosDataIntegrity.type(CosDataIntegrity::ReliableEnum);

CosFlowControl cosFlowControl;

cosFlowControl.type(CosFlowControl::BidirectionalEnum).recvWindowSize(1200

).sendWindowSize(1200);

ClassOfService cos;

cos.authentication(cosAuthentication).dataIntegrity(cosDataIntegrity).flowControl(

cosFlowControl);

TunnelStreamRequest tsr;

tsr.classOfService(cos).domainType(MMT_SYSTEM).name("TUNNEL").serviceName("DIRECT_FEED");
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 18
EMAC390L2UM.250

4 Consumer Classes
4 Consumer Classes

4.1 OmmConsumer Class

The OmmConsumer class is the main consumer application interface to the Enterprise Message API. This class encapsulates watchlist
functionality and transport level connectivity. It provides all the interfaces a consumer-type application needs to open, close, and modify
items, as well as submit messages to the connected server (both PostMsg and GenericMsg). The OmmConsumer class provides
configurable admin domain message processing (i.e., login, directory, and dictionary requests).

4.1.1 Connecting to a Server and Opening Items

Applications observe the following steps to connect to a server and open items:

• (Optional) Specify a configuration using the EmaConfig.xml file.

This step is optional because the Enterprise Message API provides a default configuration which is usually sufficient in simple
application cases.

• Create OmmConsumerConfig object (for details, refer to Section 4.3).

• (Optional) Change Enterprise Message API configuration using methods on the OmmConsumerConfig class.

If an EmaConfig.xml file is not used, then at a minimum, applications might need to modify the default host address and port.

• Implement an application callback client class that inherits from the OmmConsumerClient class (for details, refer to Section 4.2).

An application needs to override the default implementation of callback methods and provide its own business logic. Not all
methods need to be overridden; only methods required for the application’s business logic.

• (Optional) Implement an application error client class that inherits from the OmmConsumerErrorClient class (for details, refer to
Section 10.2).

The application needs to override default error call back methods to be effectively notified about error conditions.

• Create an OmmConsumer object and pass the OmmConsumerConfig object (and if needed, also pass in the application error client
object), and optionally register for Login events by passing in an application callback client class.

• Open items of interest using the OmmConsumer::registerClient() method.

• Process received messages.

• (Optional) Submit PostMsg and GenericMsg messages and modify / close items using appropriate OmmConsumer class
methods.

• Exit.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 19
EMAC390L2UM.250

4 Consumer Classes
4.1.2 Opening Items Immediately After OmmConsumer Object Instantiation

To allow applications to open items immediately after creating the OmmConsumer object, the Enterprise Message API performs the following
steps when creating and initializing the OmmConsumer object:

• Create an internal item watchlist.

• Establish connectivity to a configured server / host.

• Log into the server and obtain source directory information.

• Obtain dictionaries (if configured to do so).

4.1.3 Destroying the OmmConsumer Object

Destroying an OmmConsumer object causes the application to log out and disconnect from the connected server, at which time all items are
closed.

4.1.4 Example: Working with the OmmConsumer Class

The following example illustrates the simplest application managing the OmmConsumer Class.

4.1.5 Working with Items

The Enterprise Message API assigns all opened items or instruments a unique numeric identifier (e.g. UInt64), called a handle, which is
returned by the OmmConsumer::registerClient() call. A handle is valid as long as its associated item stays open. Holding onto these
handles is important only to applications that want to modify or close particular items, or use the items’ streams for sending PostMsg or
GenericMsg messages to the connected server. Applications that just open and watch several items until they exit do not need to store item
handles.

While opening an item, on the call to the OmmConsumer::registerClient() method, an application can pass an item closure or an
application-assigned numeric value. The Enterprise Message API will maintain the association of the item to its closure as long as the item
stays open.

Respective closures and handles are returned to the application in an OmmConsumerEvent object on each item callback method.

try {

AppClient client;

OmmConsumer consumer(OmmConsumerConfig().host("localhost:14002").username("user"));

consumer.registerClient(ReqMsg().serviceName("DIRECT_FEED").name("IBM.N"), client);

sleep(60000);

} catch (const OmmException& excp) {

cout << excp << endl;

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 20
EMAC390L2UM.250

4 Consumer Classes
4.1.6 Example: Working with Items

The following example illustrates using the item handle while modifying an item’s priority and posting modified content.

In the code snippet above, when submitting a message, specifically PostMsg, RefreshMsg, StatusMsg, or UpdateMsg, application may
specify original publisher information using the Visible Publisher Identifier (VPI) feature. This is set using publisherId by setting UserId and
UserAddress. For an explanation of the VPI feature, refer to the Enterprise Transport API Developers Guide for an explanation of VPI
feature. For more usage information, refer to the Reference Manual.

4.1.7 Working with Tunnel Streams

Enterprise Message API assigns all tunnel streams a unique numeric identifier (e.g., UInt64), called a parent handle, which is returned by the
call: OmmConsumer::registerClient(TunnelStreamRequest,…). A parent handle is valid only as long as its associated tunnel
stream is open. You can use parent handles to open substreams (as illustrated in Section 4.1.8).

When opening a tunnel stream, on the call to the OmmConsumer::registerClient(TunnelStreamRequest,…) method, an
application can pass a tunnel stream closure or an application-assigned numeric value. The Enterprise Message API will maintain the
association of the tunnel stream to its closure as long as the tunnel stream stays open. Respective closures and parent handles are returned
to the application in an OmmConsumerEvent object on each tunnel stream callback method.

For more details on a TunnelStreamRequest and how to create it, refer to Section 3.2.6 and Section 3.4.3.

void AppClient::onRefreshMsg(const RefreshMsg& refreshMsg, const OmmConsumerEvent& event)

{

cout << “Received refresh message for item handle = “ << event.getHandle() << endl;

cout << refreshMsg << endl;

}

try {

AppClient client;

OmmConsumer consumer(OmmConsumerConfig().host("localhost:14002").username("user"));

Int64 closure = 1;

UInt64 itemHandle = consumer.registerClient(ReqMsg().serviceName("DIRECT_FEED").name(

"IBM.N"), client, (void*)closure);

consumer.reissue(ReqMsg().serviceName("DIRECT_FEED").name("IBM.N").priority(2, 2),

itemHandle);

consumer.submit(PostMsg().payload(FieldList().addInt(1, 100).complete()), itemHandle

);

sleep(60000);

} catch (const OmmException& excp) {

cout << excp << endl;

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 21
EMAC390L2UM.250

4 Consumer Classes
4.1.8 Example: Working with Tunnel Streams

The following example illustrates the use of a parent handle (as returned by
OmmConsumer::registerClient(TunnelStreamRequest,…)) to open a substream from the
OmmConsumerClient::onStatusMsg() callback.

void onStatusMsg(const StatusMsg& statusMsg, const OmmConsumerEvent& event)

{

 if (event.getHandle() == _tunnelStreamHandle &&

 statusMsg.hasState() &&

 statusMsg.getState().getStreamState() == OmmState::OpenEnum)

 {

 // open substream with parent handle returned when opening tunnel stream below

 _pOmmConsumer->registerClient(ReqMsg().name("TUNNEL_IBM").serviceId(1), *this,

 (void*)1, _tunnelStreamHandle);

 }

}

int main()

{

 try {

 AppClient client;

 OmmConsumer consumer(OmmConsumerConfig().username("user"));

 client.setOmmConsumer(consumer);

 CosAuthentication cosAuthentication;

 cosAuthentication.type(CosAuthentication::OmmLoginEnum);

 CosDataIntegrity cosDataIntegrity;

 cosDataIntegrity.type(CosDataIntegrity::ReliableEnum);

 CosFlowControl cosFlowControl;

 cosFlowControl.type(CosFlowControl::BidirectionalEnum).recvWindowSize(1200

).sendWindowSize(1200);

 ClassOfService cos;

 cos.authentication(cosAuthentication).dataIntegrity(cosDataIntegrity

).flowControl(cosFlowControl);

 TunnelStreamRequest tsr;

 tsr.classOfService(cos).domainType(MMT_SYSTEM).name("TUNNEL").serviceName(

 "DIRECT_FEED");

 /* open tunnel stream and save tunnel stream parent handle to be used for opening

 substreams in onStatusMsg() callback above */

 _tunnelStreamHandle = consumer.registerClient(tsr, client);

 sleep(60000); // API calls onRefreshMsg(), onUpdateMsg(), or onStatusMsg()

 } catch (const OmmException& excp) {

 cout << excp << endl;

 }

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 22
EMAC390L2UM.250

4 Consumer Classes
4.2 OmmConsumerClient Class

4.2.1 OmmConsumerClient Description

The OmmConsumerClient class provides a callback mechanism through which applications receive OMM messages on items for which
they subscribe. The OmmConsumerClient is a parent class that implements empty, default callback methods. Applications must implement
their own class (inheriting from OmmConsumerClient), and override the methods they are interested in processing. Applications can
implement many specialized client-type classes; each according to their business needs and design. Instances of client-type classes are
associated with individual items while applications register item interests.

The OmmConsumerClient class provides default implementation for the processing of RefreshMsg, UpdateMsg, StatusMsg, AckMsg
and GenericMsg messages. These messages are processed by their respectively named methods: onRefreshMsg(), onUpdateMsg(),
onStatusMsg(), onAckMsg(), and onGenericMsg(). oApplications only need to override methods for messages they want to process.

4.2.2 Example: OmmConsumerClient

The following example illustrates an application client-type class, depicting onRefreshMsg() method implementation.

class AppClient : public refinitiv::ema::access::OmmConsumerClient

{

protected :

void onRefreshMsg(const refinitiv::ema::access::RefreshMsg&, const

refinitiv::ema::access::OmmConsumerEvent&);

void onUpdateMsg(const refinitiv::ema::access::UpdateMsg&, const

refinitiv::ema::access::OmmConsumerEvent&);

void onStatusMsg(const refinitiv::ema::access::StatusMsg&, const

refinitiv::ema::access::OmmConsumerEvent&);

};

void AppClient::onRefreshMsg(const RefreshMsg& refreshMsg, const OmmConsumerEvent&)

{

if (refreshMsg.hasMsgKey())

cout << endl << "Item Name: " << refreshMsg.getName() << endl << "Service Name: " <<

refreshMsg.getServiceName();

cout << endl << "Item State: " << refreshMsg.getState().toString() << endl;

if (DataType::NoDataEnum != refreshMsg.getPayload().getDataType())

decode(refreshMsg.getPayload().getData());

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 23
EMAC390L2UM.250

4 Consumer Classes
4.3 OmmConsumerConfig Class

4.3.1 OmmConsumerConfig Description

You can use the OmmConsumerConfig class to customize the functionality of the OmmConsumer class. The default behavior of
OmmConsumer is hard coded in the OmmConsumerConfig class. You can configure OmmConsumer in any of the following ways:

• Using the EmaConfig.xml file

• Using interface methods on the OmmConsumerConfig class

• Passing OMM-formatted configuration data through the OmmConsumerConfig::config(const Data&) method.

For more details on using the OmmConsumerConfig class and associated configuration parameters, refer to the Enterprise Message API
Configuration Guide.

4.3.2 Unencrypted Connections

The Enterprise Message API supports unencrypted connections via a ChannelType of RSSL_SOCKET (on Linux or Windows),
RSSL_WEBSOCKET, and RSSL_HTTP (on Windows only). You set ChannelType inside of a ChannelGroup. For detailed information on
ChannelGroup and its ChannelTypes, refer to the Enterprise Message API C++ Configuration Guide.

4.3.3 Encrypted Connections

The Enterprise Message API supports encrypted TCP connections for both Consumer and NiProvider via a ChannelType of
RSSL_ENCRYPTED (i.e., ChannelType::RSSL_ENCRYPTED).

4.3.3.1 Implementing Protocols and Encryption Behavior

The Enterprise Message API’s implementation of TLS protocol and encryption depends on a number of factors including:

• The operating system you use (which in turn determines the types of protocols the Enterprise Message API can use):

- On Linux, the Enterprise Message API uses only OpenSSL.

- On Windows, the Enterprise Message API can use either WinINet or OpenSSL.

• The type of protocol you use (as specified by EncryptedProtocolType):

- WinINet (specified by EncryptedProtocolType::RSSL_HTTP), or

- OpenSSL (specified by EncryptedProtocolType::RSSL_SOCKET or EncryptedProtocolType::RSSL_WEBSOCKET).

The Enterprise Message API supports the following OpenSSL protocol versions:

• OpenSSL 1.0

• OpenSSL 1.1

• OpenSSL 3.X

By default, Enterprise Message API first attempts to load OpenSSL 3 and if it cannot, Enterprise Message API then tries OpenSSL 1.1 and
then OpenSSL 1.0.

For details on the specific libraries loaded by the Enterprise Message API, refer to Section 4.3.3.2.

For OpenSSL connections, you can set the specific TLS encryption protocol you want to use in the SecurityProtocol flag (for details on
setting SecurityProtocol flags, refer to the Enterprise Message API C++ Configuration Guide). Currently, TLS 1.2 and TLS 1.3 are
accepted.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 24
EMAC390L2UM.250

4 Consumer Classes
4.3.3.2 OpenSSL Libraries

The libraries that the Enterprise Message API uses to implement OpenSSL encryption depends on the machine’s operating system and
version of OpenSSL in use:

• On Linux:

- If using OpenSSL 3.X, the Enterprise Message API uses libssl.so.3 and libcrypto.so.3.

- If using OpenSSL 1.1, the Enterprise Message API uses libssl.so.1.1 and libcrypto.so.1.1.

- If using OpenSSL 1.0, the Enterprise Message API uses libssl.so.10 and libcrypto.so.10.

• On Windows:

- If using OpenSSL 3.X, the Enterprise Message API uses libssl-3-x64.dll and libcrypto-3-x64.dll.

- If using OpenSSL 1.1, the Enterprise Message API uses libssl-1_1-x64.dll and libcrypto-1_1-x64.dll.

- If using OpenSSL 1.0, the Enterprise Message API uses ssleay32.dll and libeay32.dll.

If you want the Enterprise Message API to load a specific version, you can specify libssl and libcrypto libraries using libsslName and
libcryptoName (for details on setting these channel parameters, refer to the Enterprise Message API C++ Configuration Guide).

4.3.3.3 Certificate Authority

If you use an OpenSSL Certificate Authority store, you can specify the authority store’s location using openSSLCAStore. For details on this
parameter and the Enterprise Message API’s default behavior, refer to the parameter’s description in the Enterprise Message API C++
Configuration Guide.

4.3.4 HTTP Proxy Connections

The Enterprise Message API supports HTTP proxy tunneling for ChannelType::RSSL_SOCKET, ChannelType::RSSL_HTTP, and all
ChannelType::RSSL_ENCRYPTED connection types.

On Windows, WinINet provides legacy HTTP connection type functionality, and you must configure the proxy through the Internet Explorer
configuration. You can override WinINet's proxy configuration by using tunnelingProxyHostName() and tunnellingProxyPort().

For RSSL_SOCKET connection types (standard or encrypted), libcurl manages the proxy connection. As with OpenSSL, you can specify a
particular libcurl library using libcurlName. By default:

• On Linux, the Enterprise Message API loads libcurl.so

• On Windows, the Enterprise Message API loads libcurl.dll

For libcurl connections, you can provide additional proxy authentication credentials with the following functions:

• proxyUserName(): set the proxy user name.

• proxyPasswd(): set the password for proxy authentication.

• proxyDomain(): set the domain for proxy authentication.

NOTE: The RTSDK package does not include OpenSSL libraries. You can obtain compiled OpenSSL libraries from the appropriate OS
vendor.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 25
EMAC390L2UM.250

5 Provider Classes
5 Provider Classes

5.1 OmmProvider Class

The OmmProvider class is the main provider application interface to the Enterprise Message API. This class encapsulates transport-level
connectivity. It provides all the interfaces a provider-type application needs to submit item messages (i.e., refresh, update, status, generic) as
well as handle the login, directory, and dictionary domains (depending upon whether or not the application is an interactive provider). The
OmmProvider class provides configurable admin domain message processing (i.e., login, directory, and dictionary).

5.1.1 Connecting to ADH and Submitting Items

In the following process, the value for ProviderType is dependent on the type of provider with which you are dealing:

• For non-interactive providers, ProviderType is NiProvider.

• For interactive providers, ProviderType is IProvider.

 To establish a connection and submit items:

1. (Optional) Specify a configuration using the EmaConfig.xml file.

Specifying a configuration in EmaConfig.xml is optional because the Enterprise Message API provides a default configuration which is
usually sufficient in simple application cases.

2. Create the appropriate OmmProviderTypeConfig object (for details, refer to Section 5.4):

• For a non-interactive provider, create an OmmNiProviderConfig object.

• For an interactive provider, create an OmmIProviderConfig object

3. (Optional) Change the Enterprise Message API configuration using methods on the OmmProviderTypeConfig class.

If EmaConfig.xml file is not used, then at a minimum:

• Non-interactive provider applications might need to modify both the default host address and port.

• Interactive provider applications might need to modify the default port.

4. (Conditional) Implement an application callback client class that inherits from the OmmProviderClient class (for details, refer to
Section 5.2).

An application might need to override the default callback implementation and provide its own business logic. Not all methods need to be
overridden: only those that require the application’s business logic.

• For non-interactive providers, this step is optional because the application may choose not to open login or dictionary items. In such
cases, the provider application will not receive return messages.

• For interactive providers, this step is required, because at a minimum, the application needs to handle all inbound login domain and
item request messages.

5. (Optional) Implement an application error client class that inherits from the OmmProviderErrorClient class (for details, refer to
Section 5.2).

To be effectively notified about error conditions, the application needs to override any default, error callback methods.

6. Create an OmmProvider object and pass the OmmProviderTypeConfig object (and if needed, also pass in the application error
client object), and optionally in NiProvider only, register for Login events by passing in an application callback client class.

7. (Optional) For non-interactive providers, open login and dictionary items using the OmmProvider::registerClient() method.

8. Process received messages.

9. Create, populate, and submit item messages (refresh, update, status).

• For non-interactive providers, the application needs to associate each item with a handle that uniquely identifies the item.

• For interactive providers, the application needs to use the handle from the OMMProviderEvent.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 26
EMAC390L2UM.250

5 Provider Classes
10. (Optional) Submit GenericMsg messages using the appropriate OmmProvider class methods.

11. Exit.

5.1.2 Interactive Providers: Post OmmProvider Object Instantiation

Before an interactive provider can start submitting items, the application must first accept a login request. Though the Enterprise Message
API accepts connections, it is the responsibility of the application to send the login response. Subsequently, the consumer will request the
source directory, and the Enterprise Message API will respond by submitting the source directory.

After creating an OmmProvider object, the Enterprise Message API observes the following process when creating and initializing the
OmmProvider object so that applications can begin submitting items:

• Accept the connection request from a consumer

• Accept the login

• Submit the source directory information

5.1.3 Non-Interactive Providers: Post OmmProvider Object Instantiation

After creating an OmmProvider object, the Enterprise Message API performs the following steps when creating and initializing the
OmmProvider object so that applications can begin submitting items:

• Establish connectivity to a configured server / host

• Log into ADH and submit source directory information

5.1.4 Non-Interactive Providers: Encrypted Connections and HTTP Proxy Tunneling

Non-interactive providers support both encrypted and HTTP proxy tunneling connections. Configuration details are identical to that of the
Consumer when setting up these types of connections.

• For details on using an encrypted connection, refer to Section 4.3.3.

• For details on using an HTTP proxy tunneling connection, refer to Section 4.3.4.

5.1.5 Destroying the OmmProvider Object

For non-interactive providers, destroying an OmmProvider object causes the application to log out and disconnect from the connected ADH,
at which time all items are closed.

For interactive providers, destroying an OmmProvider object causes Enterprise Message API to close all consumer connections.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 27
EMAC390L2UM.250

5 Provider Classes
5.1.6 Non-Interactive Example: Working with the OmmProvider Class

The following example illustrates the simplest application managing the OmmProvider class.

try
 {
 OmmProvider provider(OmmNiProviderConfig().host("localhost:14003").username
 ("user"));
 UInt64 itemHandle = 5;

 provider.submit(RefreshMsg().serviceName("NI_PUB").name("IBM.N")
 .state(OmmState::OpenEnum, OmmState::OkEnum, OmmState::NoneEnum, "UnSolicited
 Refresh Completed")
 .payload(FieldList()
 .addReal(22, 3990, OmmReal::ExponentNeg2Enum)
 .addReal(25, 3994, OmmReal::ExponentNeg2Enum)
 .addReal(30, 9, OmmReal::Exponent0Enum)
 .addReal(31, 19, OmmReal::Exponent0Enum)
 .complete())
 .complete(), itemHandle);

 sleep(1000);

 for (Int32 i = 0; i < 60; i++)
 {
 provider.submit(UpdateMsg().serviceName("NI_PUB").name("IBM.N")
 .payload(FieldList()
 .addReal(22, 3391 + i, OmmReal::ExponentNeg2Enum)
 .addReal(30, 10 + i, OmmReal::Exponent0Enum)
 .complete()), itemHandle);
 sleep(1000);
 }
 }
 catch (const OmmException& excp)
 {
 cout << excp << endl;
 }
 return 0;
}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 28
EMAC390L2UM.250

5 Provider Classes
5.1.7 Interactive Provider Example: Working with the OmmProvider Class

The following example illustrates the simplest interactive application managing the OmmProvider class.

5.1.8 Interactive Provider Example: Handling Post Message

The following example illustrates how to have OmmProvider send an AckMsg in response to a PostMsg. For more information on support
of post messages by a provider, refer to the Transport API C Edition Developers Guide.

try
 {
 AppClient appClient;

 OmmProvider provider(OmmIProviderConfig().port("14002"), appClient);

 while (itemHandle == 0) sleep(1000);

 for (Int32 i = 0; i < 60; i++)
 {
 provider.submit(UpdateMsg().domainType(MMT_MARKET_BY_ORDER).payload(Map()
 .addKeyAscii(OrderNr, MapEntry::UpdateEnum, FieldList()
 .addRealFromDouble(3427, 7.76 + i * 0.1, OmmReal::ExponentNeg2Enum)
 .addRealFromDouble(3429, 9600)
 .addEnum(3428, 2)
 .addRmtes(212, EmaBuffer("Market Maker", 12))
 .complete())
 .complete()), itemHandle);

 sleep(1000);
 }
 }
 catch (const OmmException& excp)
 {
 cout << excp << endl;
 }

 return 0;

void AppClient::onPostMsg(const PostMsg& postMsg, const OmmProviderEvent& event)

{

 if (postMsg.getSolicitAck())

 {

 AckMsg ackMsg;

 ackMsg.domainType(postMsg.getDomainType());

 ackMsg.ackId(postMsg.getPostId());

 if (postMsg.hasSeqNum())

 {
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 29
EMAC390L2UM.250

5 Provider Classes
5.1.9 Interactive Provider Example: Handling RTT Responses from Consumer

The following example implements a provider's callback for Generic messages. The example illustrates how the provider can identify and
process consumer responses to RTT requests.

5.1.10 Working with Items

The application assigns unique numeric identifiers, called handles (e.g., UInt64) to all open items it is providing. Application must pass this

identifier along with an item message on the call to submit(). The handles are used to manage item stream ids. To reassign a handle to a
different item, application must first close the item previously associated with the given handle.

 ackMsg.seqNum(postMsg.getSeqNum());

 }

 event.getProvider().submit(ackMsg, event.getHandle());

 }

}

void AppClient::onGenericMsg(const GenericMsg& genericMsg, const OmmProviderEvent& event)

{

 if (genericMsg.getDomainType() == MMT_LOGIN && event.getHandle() == loginHandle &&

 genericMsg.getPayload().getDataType() == DataType::ElementListEnum)

 {

 cout << "Received login RTT message from Consumer " << event.getHandle() << endl;

 TimeValue currTicks = GetTime::getTicks();

 const ElementList& elementList = genericMsg.getPayload().getElementList();

 while (elementList.forth())

 {

 const ElementEntry& elementEntry = elementList.getEntry();

 if (elementEntry.getName() == ENAME_RTT_TICKS && elementEntry.getLoadType() ==

 DataType::UIntEnum) // "Ticks"

 {

 cout << "\tRTT Tick value is " << elementEntry.getUInt() << "us." << endl;

 lastLatency = (UInt64)(((double)currTicks - (double)elementEntry.getUInt()) /

 GetTime::ticksPerMicro());

 cout << "\tLast RTT message latency is " << lastLatency << "us." << endl;

 }

 else if (elementEntry.getName() == ENAME_RTT_TCP_RETRANS && elementEntry.getLoadType() ==

 DataType::UIntEnum) // "TcpRetrans"

 {

 cout << "\tConsumer side TCP retransmissions: " << elementEntry.getUInt() << endl;

 }

 }

 }

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 30
EMAC390L2UM.250

5 Provider Classes
5.1.11 Packing with Providers

Provider applications can use the PackedMsg object to send multiple messages packed together in a single packet. Applications can
designate the bounds of the PackedMsg by setting its limit for messages packed, the byte limit of data it can send, and then pack messages
before sending them together.

The following sections provide packing examples for an Interactive Provider and a Non-interactive Provider.

5.1.11.1 Interactive Provider Packing Example

The following example illustrates an Interactive Provider application setting up a basic PackedMsg object and packing messages together
before submitting PackedMsg.

void sendPackedMessagesExample(OmmProvider provider, UInt64 clientHandle, UInt64 itemHandle)

{

 FieldList fieldList; // Field list used for message payload

 PackedMsg packedMsg(provider);

 packedMsg.initBuffer(clientHandle); // Initialize buffer using client handle and default size of

 6000. See reference manual for other uses of initBuffer().

 for (int i = 0; i < 10; i++) // Send 10 packed messages every second (in case of packed buffer

 sufficient, if not can be send more then one packed buffer per second)

 {

 for (int j = 0; j < 10; j++) // Pack 10 messages

 {

 fieldList.clear();

 fieldList.addReal(22, 3991 + j, OmmReal::ExponentNeg2Enum);

 fieldList.addReal(30, 10 + j, OmmReal::Exponent0Enum);

 fieldList.complete();

 UpdateMsg msg;

 msg.payload(fieldList);

 try

 {

 packedMsg.addMsg(msg, itemHandle); // Add message with its item handle

 }

 catch (const OmmInvalidUsageException& excp)

 {

 //The API was unable to add the current message into the packed buffer.

 //If messages have been successfully added to the packed buffer, submit them,

 //get a new packed buffer, and add the current message into that new buffer.

 if (excp.getErrorCode() == OmmInvalidUsageException::BufferTooSmallEnum)

 {

 if (packedMsg.packedMsgCount() > 0) // Packed message has some data

 {

 // Submit the messages we've already packed, get a new packed buffer,

 //and add the current message.

 provider.submit(packedMsg); //Submit packed message on OmmProvider

 packedMsg.initBuffer(clientHandle); // Re-initialize buffer for next set of
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 31
EMAC390L2UM.250

5 Provider Classes
5.1.11.2 Non-interactive Provider Packing Example

The following example illustrates a Non-interactive Provider application setting up a basic PackedMsg object and packing messages
together before submitting the PackedMsg.

 packed messages.

 packedMsg.addMsg(msg, itemHandle); // Add missed message with its item handle

 }

 else

 {

 //Packed buffer too small to add even first message.

 //Consider initializing the buffer to a higher value than the default 6000 bytes

 if needed.

 //See initBuffer() methods for more details.

 }

 }

 else

 {

 // Handle other exceptions from addMsg() here

 }

 }

 }

 if (packedMsg.packedMsgCount() > 0)

 {

 provider.submit(packedMsg); //Submit packed message on OmmProvider

 packedMsg.initBuffer(clientHandle); // Re-initialize buffer for next set of packed

 messages.

 }

 else

 {

 // Nothing to submit because packed message is empty.

 }

 sleep(1000);

 }

}

void sendPackedMessagesExample(OmmProvider provider, UInt64 itemHandle)

{

 FieldList fieldList; // Field list used for message payload

 PackedMsg packedMsg(provider);

 packedMsg.initBuffer(); // Initialize buffer with default size of 6000. See reference manual for

 other uses of initBuffer().

 for (int i = 0; i < 10; i++) // Send 10 packed messages every second

 {

 for (int j = 0; j < 10; j++) // Pack 10 messages
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 32
EMAC390L2UM.250

5 Provider Classes
 {

 fieldList.clear();

 fieldList.addReal(22, 3991 + j, OmmReal::ExponentNeg2Enum);

 fieldList.addReal(30, 10 + j, OmmReal::Exponent0Enum);

 fieldList.complete();

 UpdateMsg msg;

 msg.payload(fieldList);

 try

 {

 packedMsg.addMsg(msg, itemHandle); // Add message with its item handle

 }

 catch (const OmmInvalidUsageException& excp)

 {

 //The API was unable to add the current message into the packed buffer.

 //If messages have been successfully added to the packed buffer, submit them, get a new

 //packed buffer, and add the current message into that new buffer.

 if (excp.getErrorCode() == OmmInvalidUsageException::BufferTooSmallEnum)

 {

 if (packedMsg.packedMsgCount() > 0) // Packed message has some data.

 {

 // Submit the messages we've already packed, get a new packed buffer, and add

 the current message.

 provider.submit(packedMsg); //Submit packed message on OmmProvider.

 packedMsg.initBuffer(); // Re-initialize buffer for next set of packed

 messages.

 packedMsg.addMsg(msg, itemHandle); // Add missed message with its item handle

 }

 else

 {

 //Packed buffer too small to add even first message.

 //Consider initializing the buffer to a higher value than the default 6000 bytes

 if needed.

 //See initBuffer() methods for more details.

 }

 }

 else

 {

 // Handle other exceptions from addMsg() here.

 }

 }

 }

 if (packedMsg.packedMsgCount() > 0)

 {

 provider.submit(packedMsg); // Submit packed message on OmmProvider.

 packedMsg.initBuffer(); // Re-initialize buffer for next set of packed messages.

 }

 else
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 33
EMAC390L2UM.250

5 Provider Classes
5.2 OmmProviderClient Class

5.2.1 OmmProviderClient Description

The OmmProviderClient class provides a callback mechanism through which applications receive OMM messages on items for which
they subscribe. The OmmProviderClient is a parent class that implements empty, default callback methods. Applications must implement
their own class (inheriting from OmmProviderClient), and override the methods they are interested in processing. Applications can
implement many specialized client-type classes; each according to their business needs and design. Instances of client-type classes are
associated with individual items while applications register item interests. The OmmProviderClient class provides default implementation
for the processing of RefreshMsg, StatusMsg, and GenericMsg messages. These messages are processed by their respectively named

methods: onRefreshMsg(), onStatusMsg(), onGenericMsg(), onRequest()1, onReIssue()1, onClose()1, and onPost()1.
Applications only need to override methods for messages they want to process.

5.2.2 Non-Interactive Example: OmmProviderClient

The following example illustrates an application client-type class, depicting onRefreshMsg() method implementation.

 {

 // Nothing to submit because packed message is empty.

 }

 sleep(1000);

 }

}

1. Interactive Provider Only

class AppClient : public refinitiv::ema::access::OmmProviderClient
{
protected :
 void onRefreshMsg(const refinitiv::ema::access::RefreshMsg&, const
 refinitiv::ema::access::OmmProviderEvent&);
 void onStatusMsg(const refinitiv::ema::access::StatusMsg&, const
 refinitiv::ema::access::OmmProviderEvent&);
 bool _bConnectionUp;
};

void AppClient::onRefreshMsg(const RefreshMsg& refreshMsg, const OmmProviderEvent&
 ommEvent)
{
 cout << endl << "Handle: " << ommEvent.getHandle() << " Closure: " <<
 ommEvent.getClosure() << endl;
 cout << refreshMsg << endl;

 if (refreshMsg.getState().getStreamState() == OmmState::OpenEnum)
 {
 if (refreshMsg.getState().getDataState() == OmmState::OkEnum)
 _bConnectionUp = true;
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 34
EMAC390L2UM.250

5 Provider Classes
5.2.3 Interactive Example: OmmProviderClient

The following example illustrates an application client-type class, depicting onRefreshMsg() method implementation.

 else
 _bConnectionUp = false;
 }
 else
 _bConnectionUp = false;
}

void AppClient::processLoginRequest(const ReqMsg& reqMsg, const OmmProviderEvent& event)
{
 event.getProvider().submit(RefreshMsg().domainType(MMT_LOGIN).name(reqMsg.getName()).
 nameType(USER_NAME).complete().solicited(true).
 state(OmmState::OpenEnum, OmmState::OkEnum, OmmState::NoneEnum,
 "Login accepted"),event.getHandle());
}

void AppClient::processMarketByOrderRequest(const ReqMsg& reqMsg, const OmmProviderEvent&
 event)
{
 if (itemHandle != 0)
 {
 processInvalidItemRequest(reqMsg, event);
 return;
 }

 event.getProvider().submit(RefreshMsg().domainType(MMT_MARKET_BY_ORDER).
 name(reqMsg.getName()).serviceName(reqMsg.getServiceName()).solicited(true)

 .summaryData(FieldList().addEnum(15, 840).addEnum(53, 1).addEnum(3423, 1).
 addEnum(1709, 2).complete())
 .addKeyAscii(OrderNr, MapEntry::AddEnum, FieldList()
 .addRealFromDouble(3427, 7.76, OmmReal::ExponentNeg2Enum)
 .addRealFromDouble(3429, 9600)
 .addEnum(3428, 2)
 .addRmtes(212, EmaBuffer("Market Maker", 12))
 .complete())
 .complete())
 .complete(), event.getHandle());

 itemHandle = event.getHandle();
}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 35
EMAC390L2UM.250

5 Provider Classes
void AppClient::processInvalidItemRequest(const ReqMsg& reqMsg, const OmmProviderEvent&
 event)
{
 event.getProvider().submit(StatusMsg().name(reqMsg.getName()).serviceName(
 reqMsg.getServiceName())
 .domainType(reqMsg.getDomainType())
 .state(OmmState::ClosedEnum, OmmState::SuspectEnum, OmmState::NotFoundEnum,
 "Item not found"),
 event.getHandle());
}

void AppClient::onReqMsg(const ReqMsg& reqMsg, const OmmProviderEvent& event)
{
 switch (reqMsg.getDomainType())
 {
 case MMT_LOGIN:
 processLoginRequest(reqMsg, event);
 break;
 case MMT_MARKET_BY_ORDER:
 processMarketByOrderRequest(reqMsg, event);
 break;
 default:
 processInvalidItemRequest(reqMsg, event);
 break;
 }
}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 36
EMAC390L2UM.250

5 Provider Classes
5.3 OMMIProviderConfig

You can use the OmmNiProviderConfig class to customize the functionality of the OmmProvider class. The default behavior of
OmmProvider is hard coded in the OmmNiProviderConfig class. You can configure OmmProvider in any of the following ways:

• Using the EmaConfig.xml file

• Using interface methods on the OmmNiProviderConfig class

• Passing OMM-formatted configuration data through the OmmNiProviderConfig::config(const Data&) method.

For more details on using the OmmNiProviderConfig class and associated configuration parameters, refer to the Enterprise Message API
Configuration Guide.

5.4 OmmNiProviderConfig Class

In the following, the value for ProviderType is dependent on the type of provider with which you are dealing, thus:

• For non-interactive providers, ProviderType is NiProvider.

• For interactive providers, ProviderType is IProvider.

You can use the OmmProviderTypeConfig class to customize the functionality of the OmmProvider class. The default behavior of
OmmProvider is hard coded in the OmmProviderTypeConfig class. You can configure OmmProvider in any of the following ways:

• Using the EmaConfig.xml file

• Using interface methods on the OmmProviderTypeConfig class

• Passing OMM-formatted configuration data through the OmmProviderTypeConfig::config(const Data&) method.

For more details on using the OmmProviderTypeConfig class and associated configuration parameters, refer to the Enterprise Message
API Configuration Guide.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 37
EMAC390L2UM.250

6 Consuming Data from the Cloud
6 Consuming Data from the Cloud

6.1 Overview

You can use the Enterprise Message API to consume data from a cloud-based LSEG Real-Time Advanced Distribution Server. The API
interacts with cloud-based servers using the following workflows:

• Credential Management (for details, refer to Section 6.3)

• Service Discovery (for details, refer to Section 6.6)

• Consuming Market Data (for details, refer to Section 6.7)

• Login Reissue (for details, refer to Section 6.4.3)

There are two versions of login credentials for the Delivery Platform:

• Version 1 Authentication also known as “V1 auth”, “OAuthPasswordGrant” or “V1 Password Credentials”: Uses the OAuth2.0 Password
grant or Refresh Token grant. Requires a Machine Account consisting of username and password; also requires a client ID generated by
the LSEG AppGenerator. For details, refer to Section 6.4.

• Version 2 Authentication also known as “V2 auth”, “OAuthClientCredentials” or “V2 Client Credentials”: Uses OAuth2.0 Client
Credentials grant to obtain an access token. Requires a Service Account consisting of client ID and client Secret. For details, refer to
Section 6.5.

The Enterprise Transport API will determine which authentication version to use based on the inputs. By default, for cloud connections the
Enterprise Message API connects to a server in the us-east-1 cloud location.

For further details on Real-Time as it functions in the cloud, refer to the Real-Time — Optimized: Installation and Configuration for Client Use.
For details on the parameters you use to configure cloud connections, refer to the EMA C++ Edition Configuration Guide.

6.2 Encrypted Connections

When connecting to an LSEG Real-Time Advanced Distribution Server in the cloud, you must use a ChannelType of RSSL_ENCRYPTED
(for details on ChannelType, refer to the Enterprise Message API C++ Configuration Guide).

Encrypted connections to the cloud must use an OpenSSL-based connection type (on both Windows and Linux). WinINet is not supported
for cloud connectivity.

6.3 Credential Management

By default, the Enterprise Message API will store all credential information. In order to use secure credential storage, a callback function can
be specified by the user. If a callback function is specified, credentials are not stored in API; instead, application is called back whenever
credentials are required.

If an OmmOAuth2ConsumerClient is specified when creating the OmmConsumer object, the API will callback
OmmOAuth2ConsumerClient.onCredentialRenewal whenever credentials are required. This call back must call
OmmConsumer.renewOAuthCredentials to provide the updated credentials.

NOTE: OmmConsumer.renewOAuthCredentials can only be called during the callback.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 38
EMAC390L2UM.250

6 Consuming Data from the Cloud
6.4 Version 1 Authentication Using oAuth Password and Refresh_Token

6.4.1 Client_ID (AppKey) and Client Secret

To connect to Real-Time - Optimized infrastructure, the Enterprise Message API requires a Client_ID, and optionally can include a client
secret. Client_IDs are generated using AppGenerator, which refers to the Client_ID as an AppKey. Each user must obtain their unique
Client_ID using the machine account email sent by LSEG, which includes a link to AppGenerator. Keep your Client_ID private: do not
share Client_IDs.

• For further details on generating this ID, refer to the Real-Time - Optimized: Installation and Configuration for Client Use document.
Each Client_ID is unique: do not share it with others.

• For further details on supporting client secret submissions, refer to the.

• For details on how OAuth uses a Client Secret with a Client ID and their relationship, refer to OAuth documentation at: the following
URL: https://www.oauth.com/oauth2-servers/client-registration/client-id-secret/.

6.4.2 Obtaining Initial Access and Refresh Tokens

To obtain an access token, the RTSDK API sends its username, Client_ID, and password in a single message to the Delivery Platform.

In response, the Delivery Platform sends an access token, its expiration timeout (by default: 300 seconds), and a refresh token for use in the
login reissue process (for details on the expiration timeout and login reissue process, refer to Section 6.4.3). The API must obtain an access
token before executing a service discovery or obtaining market data.

The following diagram illustrates the process by which the RTSDK API obtains its tokens:

Figure 2. Obtaining an Authentication Token

TIP: You can also specify tokenScope and clientSecret in the OMMConsumerConfig.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 39
EMAC390L2UM.250

https://www.oauth.com/oauth2-servers/client-registration/client-id-secret/

6 Consuming Data from the Cloud
6.4.3 Refreshing the Access Token and Sending a Login Reissue

In response to the API’s token request, the Delivery Platform sends an access token and a refresh token, both with associated expiration
timeouts which set the length of time for which the token is valid. If the LSEG Real-Time Advanced Distribution Server does not receive a
new access token before the end of the expiration timeout, the LSEG Real-Time Advanced Distribution Server sends a login close status
message and closes the connection.

To create a seamless experience for API users, the API sends the refresh token to proactively obtain a new access token prior to the
published expiration timeout. The Enterprise Message API calculates the time at which it requests a new access token by multiplying the
token’s published timeout by 4/5 (i.e., 0.8).

In response to receiving a refresh token, the Delivery Platform sends a new access token with an associated timeout to the API. After
receiving the new access token from the Delivery Platform, the API renews its connection by sending a Login Reissue with the new access
token to the LSEG Real-Time Advanced Distribution Server. The process of renewing the access token and refreshing the LSEG Real-Time
Advanced Distribution Server connection via a Login Reissue continues until the refresh token itself expires (which can take several hours or
days). When using a grant_type of refresh_token, if the value for expires_in does not match the expires_in received from when the API
obtained the refresh_token (i.e., when grant_type was password), this is an indication that the refresh_token is about to expire. In this
case, the API will obtain a new set of both refresh and access tokens as described in Section 6.4.2.

The login reissue process is illustrated in the following diagram:

Figure 3. Login Reissue

NOTE: The life cycle of OmmConsumer in the Enterprise Message API depends on the state of the login stream because the Enterprise
Message API closes the underlying channel whenever the API receives a close status message from LSEG Real-Time Advanced
Distribution Server. To recover from this scenario, the application must create another OmmConsumer and resubscribe to all applicable items.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 40
EMAC390L2UM.250

6 Consuming Data from the Cloud
6.5 Version 2 Authentication Using OAuth Client Credentials

Version 2 authentication is available with two types of accounts:

• OAuth Client Credentials which requires a client ID and client secret.

• OAuth Client Credentials with JWT which requires client ID and private JWK for JWT.

Version 2 will generate an Access Token. Once connected to Real-Time — Optimized RTC, the login session to the LSEG Real-Time
Connector (RTC) will remain valid until the consumer disconnects or is disconnected from Real-Time — Optimized. The API will only re-
request an Access Token in the following cases:

• When the consumer disconnects and goes into a reconnection state.

• If the Channel stays in reconnection long enough to get close to the expiry time of the Access Token.

Due to the above changes, credentials are managed independently per reactor channel. Channels do not share credentials.

6.5.1 Configuring and Managing Version 2 Credentials

The client ID and client secret or private JWK must be set on the OmmConsumer object as described in Section 6.10.2.1 of the Enterprise
Transport API C++ Edition Value Added Developers Guide. The OmmOAuth2ConsumerClient will handle the credentials the same way as
Version 1, with an OmmOAuth2ConsumerClient callback for credentials if the user does not wish for the OmmOAuth2ConsumerClient to
store them.

6.5.1.1 JWT Credentials Handling

Version 2 OAuth Client Credentials with JWT requires a JWK public/private pair to be generated and registered with LSEG via the Platform
Admin UI. The API will use a private JWK to create and sign a JWT request, which will be sent to retrieve an access token. The JWK will be
handled by the API the exact same way as a client secret above. For more information about the Platform Admin UI, refer to the Real-Time
— Optimized documentation in the LSEG Developers portal.

6.5.2 Version 2 OAuth Client Credentials Token Lifespan

Unlike Version 1, Version 2 will only produce a single Access Token, which will be valid for the length of the entire expires_in field in the
token. This Access Token is used by the API to perform service discovery, and to connect to Real-Time — Optimized.

Once connected, the API does not need to periodically renew a token.

The API will re-request a token on reconnect, and will use that token for all reconnect attempts until a short time prior to expiry. At that time,
the API will get a new token for reconnection use.

6.6 Service Discovery

After obtaining a token (for details, refer to Section 6.4.2), the Enterprise Message API can perform a service discovery against the Delivery
Platform to obtain connection details for the Real-Time — Optimized. To discover endpoints, application may rely either on file or
programmatic configuration. This is accomplished by making a REST query to the Service Discovery service. EMA API may be configured to
perform this query and choose an endpoint (host and port) in a specified region. Or, EMA application may interact with a pre-defined service
discovery object (see ServiceEndpointDiscovery) to customize choosing endpoint(s).

For service discovery performed by API, see Cons113 example. For service discovery performed in application, see Cons450 example.

In response to a service discovery, the Delivery Platform returns transport and data format protocols and a list of hosts and associated ports
for the requested service(s) (i.e., an LSEG Real-Time Advanced Distribution Server running in the cloud or endpoint). LSEG provides
multiple cloud locations based on region, which is significant in how the Enterprise Message API chooses the IP address and port to use
when connecting to the cloud.

From the list sent by the Delivery Platform, the Enterprise Message API identifies a Real-Time — Optimized endpoint with built-in resiliency
whose regional location matches the API’s location setting in ChannelGroup (for details, refer to Section 3.3.2 “Universal Channel Entry

NOTE: Follow best practices for securely storing and retrieving JWK.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 41
EMAC390L2UM.250

6 Consuming Data from the Cloud
Parameters” of the Enterprise Message API C++ Edition Configuration Guide). If you do not specify a location, the Enterprise Message API
defaults to the us-east-1 cloud location. An endpoint with built-in resiliency lists multiple locations in its location field (e.g., location: [us-
east-1a, us-east-1b]). If multiple endpoints are configured for failover, the Enterprise Message API chooses to connect to the first
endpoint listed.

Figure 4. Service Discovery
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 42
EMAC390L2UM.250

6 Consuming Data from the Cloud
6.7 Consuming Market Data

After obtaining its login token (for details, refer to Section 6.4.2) and running a service discovery (for details, refer to Section 6.6), the API can
connect to the LSEG Real-Time Advanced Distribution Server in the cloud and obtain market data. While consuming market data, the API
must periodically renew its token via the login reissue workflow (for details, refer to Section 6.4.3).

6.8 HTTP Error Handling for Reactor Token Reissues

The Enterprise Message API supports handling for the following HTTP error codes from the API gateway:

• 300 Errors:

• Perform URL redirect for 301, 302, 307 and 308 error codes

• Retry the request to the API gateway for all other error codes

• 400 Errors:

• For Version 1 authentication, retry with username and password for error codes 400 and 401

• Stop retry the request for error codes 403, 404, 410, and 451

• Retry the request to the API gateway for all other error codes

• 500 Errors:

• Retry the request to the API gateway for all error codes
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 43
EMAC390L2UM.250

6 Consuming Data from the Cloud
6.9 Cloud Connection Use Cases

You can connect to the cloud and consume data according to the following use cases:

• Start to finish session management (for details, refer to Section 6.9.1)

• Explicit service discovery option for applications (for details, refer to Section 6.9.2)

6.9.1 Session Management Use Case

In this use case, the Enterprise Message API manages the entire connection from start to finish. To use session management, you need to
configure the API to enable session management. To do so, in the ChannelGroup, set the Channel entry parameter
EnableSessionManagement).

The API exhibits the following behavior for this use case:

1. Obtains a token (according to the details in Section 6.4.2).

2. Queries service discovery (according to the details in Section 6.6).

3. Consumes market data (according to the details in Section 6.7).

Manages login reissues for Version 1 authentication when needed on a cyclical basis (according to the details in).Enterprise Message API’s
Consumer example (113__MarketPrice__SessionManagement example) provides sample source to illustrate session management.

With session management enabled, application may specify a host and port in ChannelGroup parameters. In this case, the Enterprise
Message API exhibits the same behavior listed above, but ignores the endpoints it receives from the service discovery and connects to the
specified host and port.

6.9.2 Query Service Discovery

Application has the option to do a service discovery, parse the results, and choose an endpoint to pass into API. The API exhibits the
following behavior when application does an explicit service discovery:

1. Obtains a token (according to the details in Section 6.4.2).

2. Queries service discovery (according to the details in Section 6.6).

Enterprise Message API’s Consumer example (450__MarketPrice__QueryServiceDiscovery) provides sample source that discovers an
endpoint using the service discovery feature and establishes an encrypted connection to consume data.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 44
EMAC390L2UM.250

6 Consuming Data from the Cloud
6.10 Logging of Authentication and Service Discovery Interaction

If needed, you can log interactions with the Delivery Platform. To enable logging, use the parameters RestEnableLog and
RestLogFileName in the EMA configuration file or programmatic configuration in the Consumer Group. If Service Discovery is done from
the application, logging may be enabled only via function call configuration. For details on these parameters, refer to the Enterprise Message
API C++ Configuration Guide.

6.10.1 Logged Request Information

With logging turned on in the fashion mentioned in Section 6.10, the Enterprise Message API writes the following request information in the
log:

6.10.2 Logged Response Information

With logging turned on in the fashion mentioned in Section 6.10, the Enterprise Message API writes the following response information in the
log:

Request:

- Time stamp

- The Name of the class and method that made the request

- Request method

- URI

- Request headers

- Proxy information (if used)

- Body of request as set of pairs parameter_name: parameter_value

NOTE: If the request contains parameters password, newPassword, or client_secret, the Enterprise Message API uses a placeholder
instead of the real value of the respective parameter (thus indicating that the value was present).

Response:

- Time stamp

- The Name of the class and method that received the response

- Response status code

- Response headers

- Body of response in string format
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 45
EMAC390L2UM.250

7 Warm Standby Feature
7 Warm Standby Feature

7.1 Overview

The Warm Standby feature, a client-side feature, is implemented at the Value Add Watchlist layer of Enterprise Transport API (ETA) and
made available via Enterprise Message API with configuration. This feature works by providing the application the capability to failover from
an active to one or more standby server(s) in the event that the primary/active fails. Application must configure the active and standby
servers to use this API feature. After the connections are established with the provided servers which form a Warm Standby group, the client-
side or consumer sends messages to the standby server connections to change their mode to Standby. Requested items are opened on all
servers by the consumer but the active server responds with messages such as refresh, updates, status, etc. to the consumer. Standby
servers respond with blank/empty refreshes. When primary fails, consumer notifies the next server in standby list that it is now Active. The
new active server responds with refresh as needed resumes updates for all open items. This process of cut-over is transparent to the
application.

A server qualifies to be a standby only if it advertises support for Warm Standby, supports similar features over login and offers an identical
service (supported domains, quality of service, etc.) as the active server.

Warm Standby not only reduces overall recovery time, but also network traffic by not inducing a “packet storm” with a flurry of re-requests to
a standby server. Because the standby server is already aware of items an application has subscribed for, during a failover Enterprise
Enterprise Message API does not need to re-subscribe open items between a provider and consumer.

7.2 Warm Standby Modes

The Enterprise Message API Value Add layer supports two Warm Standby modes:

• Login based Warm Standby

• Service based Warm Standby

The login based Warm Standby uses the connection lost event to switch from a primary server to a standby server from the standby server
list. The service based Warm Standby uses the service down event OR connection lost event to switch all subscribe items from a primary
service to a standby service.

The service based Warm Standby mode offers better resiliency than the login based mode as it can switch from primary to standby if an
upstream service is down but the connection to both servers remains intact. A particular server may be the primary for one service and
standby for another service as a result. This ability to failover in the event of service down or channel down events makes the service based
Warm Standby the recommended mode.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 46
EMAC390L2UM.250

7 Warm Standby Feature
The following figure illustrates the sequence of events when using the Login Based Warm Standby feature:

.

Figure 5. Login Based Warm Standby Order of Events in a Cutover from Active to Standby
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 47
EMAC390L2UM.250

7 Warm Standby Feature
The following figure illustrates the sequence of events when using the Service Based Warm Standby feature:

Figure 6. Service Based Warm Standby Order of Events in a Cutover from Active to Standby

7.3 Warm Standby Configuration and Feature Details

For details, refer to the Enterprise Message API C++ Edition Configuration Guide.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 48
EMAC390L2UM.250

8 Preferred Host Feature
8 Preferred Host Feature

The Preferred Host feature is supported with ChannelSet and WarmStandby features. This feature allows consumer applications to configure
a specific host or warm standby group as “preferred”, and upon either a timer-based (using either a static timer or a cron string) or method-
based trigger, cause the API library to perform a single connection attempt to the preferred host without cutting any currently active
connections. Once a connection has been established to the preferred host, the API library will switch the connections and alert the user. If
the connection attempt fails, the library will signal that the operation is complete, and will not make any changes to the current connection.
Also, with this feature enabled, upon connection recovery, depending on configuration, the library will attempt to connect to preferred host/
group.

The Preferred Host configuration for an EMA channel can be changed at any time through IOCtl calls, including the ability to disable or
enable this feature.

For details on the Preferred Host feature and associated configuration parameters, refer to the Enterprise Message API Configuration Guide.

8.1 Preferred Host Reconnection Behavior Changes

When Preferred Host is enabled, the reconnection order is changed to attempt the configured Preferred Host connection and Warm Standby
group (if enabled) more aggressively by alternating between a configured preferred connection and a non-preferred connection. For more
information about the specific ordering and differences from non-preferred host reconnection, reconnection and recovery behaviors in ETA C
Value Add Developers Guide.

8.2 Preferred Host Operation Steps

When the Preferred Host operation is triggered (either by method call or timer), and Preferred Host is enabled, the following steps will occur.
The application continues to receive data from the current connections while the Preferred Host operation is occurring.

The following sections describe possible scenarios.

8.2.1 ChannelSet Behaviors with Preferred Host Options Enabled

1. If the Channel is already on the preferred channel:

a. The library will send Login StatusMsg with dataState ==RSSL_DATA_OK, streamState == RSSL_STREAM_OPEN, text ==
"Preferred host complete" and code == OmmState.SocketPHComplete, after finishing Preferred Host operation if the EMA
application is registered to receive Login administrative domain messages.

2. If the Channel is not on preferred channel in ChannelSet configuration:

a. The library will attempt to establish a connection to the configured preferred channel in the ChannelSet.

b. Once that is established, the library will do the following:

i. Send a StatusMsg with text dataState == RSSL_DATA_SUSPECT, streamState == RSSL_STREAM_OPEN, and text ==
“channel down” to all open items.

ii. The library will then swap the underlying transport channels, and a Login StatusMsg with dataState == RSSL_DATA_OK,
streamState == RSSL_STREAM_OPEN, text == "channel up" is sent to EMA application if registered to receive Login
administrative domain messages.

iii. The library will send a StatusMsg with dataState ==RSSL_DATA_OK, streamState == RSSL_STREAM_OPEN, text ==
"Preferred host complete" and code == OmmState.SocketPHComplete to the application for all open items, after the former
non-preferred channel is fully closed by library.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 49
EMAC390L2UM.250

8 Preferred Host Feature
8.2.2 Warm Standby Configuration with Preferred Host Options Enabled

1. If the Channel is already on the preferred Warm Standby group (in WarmStandby config):

a. The library will send Login StatusMsg with dataState ==RSSL_DATA_OK, streamState == RSSL_STREAM_OPEN, text ==
"Preferred host complete" and code == OmmState.SocketPHComplete, after finishing Preferred Host operation if the EMA
application is registered to receive Login administrative domain messages.

2. If using Warm Standby configuration and not on preferred group and PHFallBackWithInWSBGroup is false/disabled:

a. The library attempts to establish a connection to the configured preferred Warm Standby group's starting connection. Once that is
established, the following occurs:

i. The library closes out all of the currently active standby connections and the starting connection and generates item and source
directory (if application requested directory) status messages. Open items receive StatusMsg with text dataState ==
RSSL_DATA_SUSPECT, streamState == RSSL_STREAM_OPEN, and text == "channel down", indicating that the Warm
Standby group is fully closed and that library is switching to the preferred Warm Standby group.

ii. The library will then swap the underlying transport channels, and a Login StatusMsg with dataState == RSSL_DATA_OK,
streamState == RSSL_STREAM_OPEN, text == "channel up" is sent to EMA application if subscribed to Login administrative
domain.

iii. The library will send a Login StatusMsg with dataState ==RSSL_DATA_OK, streamState == RSSL_STREAM_OPEN, text ==
"Preferred host complete" if the EMA application is registered to receive Login administrative domain messages.

iv. Once the library internally receives login and directory responses, it will connect to the configured secondary servers in the
Warm Standby group.

b. If the connection attempt to preferred group's starting active server fails, the library will notify application that preferred host operation
is complete with a Login StatusMsg with dataState ==RSSL_DATA_OK, streamState == RSSL_STREAM_OPEN, text == "Preferred
host complete" and code == OmmState.SocketPHComplete. The library stays connected to current connections and any data that is
flowing will continue to flow.

3. If using Warm Standby configuration and not on preferred group and PHFallBackWithInWSBGroup is true/enabled:

a. The fallback within a warm standby group will occur, and the Channel will not attempt to connect to a different Warm Standby group.

b. The following operations will be done depending on the type of the current Warm Standby group configuration:

– For a Login-based Warm Standby group: If the starting server connection is active and not the current active connection for the
Warm Standby group, the library will swap the current active server to the starting server connection. The application may see
unsolicited refreshes to re-synchronize the item streams.

– For a Service-based Warm Standby group (or Login and Service-based): The library will iterate through the configuration of the
Warm Standby group, starting with the starting server, and going through each connection defined in the secondary server list.
For each service name defined PerServiceNameSet, if the service name is in an ACTIVE state on that connection, that
connection will become the ACTIVE for that service, and the previous active will become STANDBY. Note that if service names
are not defined, the behavior is the same as Login-based.

If a service name is defined multiple times in the Warm Standby group, the first time it is found as ACTIVE on a connection will
be used and ignored on subsequent matches.

Any services that are not defined in the configuration will be ignored by this operation, and the current ACTIVE for those
services will not be changed.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 50
EMAC390L2UM.250

9 Request Routing
9 Request Routing

The Request Routing feature, a client-side feature, provides the application the capability to route market data item requests to multiple
connections depending on the availability of services of each connection. EMA routes item requests by matching the quality of service and
capabilities of the requested concrete service or service list name in order to submit the request messages. EMA manages multiple
connections, aggregates login responses and concrete services on behalf of application. The same concrete service name of each
connection must have the same quality of service list, item list and support QoS range attributes otherwise the subsequent connection is
closed and removed. Application can define a service list which contains a list of concrete service names for requesting market data items
using the service list name which requests are routed to the first qualifying service on the service list. For item recovery, EMA recovers items
from the concrete services in the consumer session which matches with the requested concrete service name or one of concrete service in
the specified service list and the service is ready to accept requests.

For details, see the following sections:

• Administrative Domains Behaviors

• Service List

• Item Request Routing and Recovery

• Posting Messages

• Sending Generic Message

• Session Channel Information from OmmConsumer and OmmConsumerEvent

9.1 Administrative Domains Behaviors

In order to create a consumer session for request routing, multiple connections must be aggregated. Handling administrative domains for
aggregating multiple connections has some specific behaviors.

For details, see the following sections:

• Login Request Timer Handling and Login Response Aggregation

• Aggregated Login Elements

• Scenarios for Receiving Aggregated Login Stream

• Directory Request Timer Handling and Directory Response Aggregation

• Dictionary Request Timer Handling
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 51
EMAC390L2UM.250

9 Request Routing
9.1.1 Login Request Timer Handling and Login Response Aggregation

The LoginRequestTimeOut parameter is configured in ConsumerGroup to control how long would EMA waits to receive login response for
all configured session channels during OmmConsumer initialization. The following are scenarios for handling multiple connections for a
consumer session.

9.1.2 Aggregated Login Elements

Enterprise Message API aggregates all login responses from all connections and presents to application as a login response once login
domain handling is completed. Login aggregation takes the login element attributes that are present across all of the connections.

The following is the list of aggregated login elements. For each element, all connections must support login aggregation, otherwise it will not
be supported.

• ProvidePermissionProfile

• ProvidePermissionExpressions

• SupportBatchRequests

• SupportOptimizedPauseResume

• SupportPauseResume

• SupportOMMPost

• SupportEnhancedSymbolList

• SupportViewRequests

• RoundTripLatency

SCENARIOS FOR LOGIN REQUEST
TIMEOUT

LOGIN INITIALIZATION BEHAVIOR

No connections come up or EMA does not
receive any login response within timeout.

• Initialization fails at timeout. Application must re-create the OmmConsumer object.

• The OmmConsumer object will not be created.

Only some connections are up and sent login
response, the login timer fires.

• Initialization succeeds with the login domain at timeout.

NOTE: Initialization succeeds with the login domain at timeout. Channels that did not
come up will be closed: if application wants to route to channels that did NOT come up in
time, application must re-create OmmConsumer.

• Application is notified of which connections are up/down upon timeout via login
stream.

• Requests are routed in the ordered list of connections in the Consumer's
SessionChannelSet configuration.

EMA receives login denied status message for
a connection.

Enterprise Message API closes the connection and removes the channel from the
session channel list.

All configured connections come up before the
login timeout fires.

• Initialization succeeds with the login domain immediately upon all connections up.
Application is notified of which connections are up/down upon all connections up.

• Requests are routed in the ordered list of connections in the Consumer's
SessionChannelSet configuration.

Table 2: Scenarios for Login Request Timeout

NOTE: SingleOpen and AllowSuspect attributes are always turned on for the Request Routing feature.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 52
EMAC390L2UM.250

9 Request Routing
9.1.3 Scenarios for Receiving Aggregated Login Stream

Applications can register to receive an aggregated login stream and channel information via login stream for each session channels in order
to receive notification of channel events. The aggregated login message's OmmState is used to represent the entire consumer session as
described in the following table.

9.1.4 Directory Request Timer Handling and Directory Response Aggregation

The DirectoryRequestTimeOut parameter in ConsumerGroup is used to control how long would Enterprise Message API waits to
receive directory response for all configured session channels during OmmConsumer initialization. Initialization fails at timeout when
Enterprise Message API does not receive at least one source directory valid response from a channel.

For source directory aggregation, Enterprise Message API generates a unique service ID for each particular service in order to aggregate
particular services with the same name from multiple connections, Applications can register with the source directory domain to receive
source directory response for aggregated services in order to retrieve source directory information including the generated service ID.
Enterprise Message API aggregates and caches for particular services only for INFO and STATE filters for routing user's requests.

For each particular service name, the following element attributes must match.

• List of supported quality of service (QoS)

• Item List name

• Support QoS range

AGGREGATED LOGIN STREAM
SCENARIOS

MESSAGE
TYPE

STREAM
STATE

DATA
STATE

DESCRIPTION

EMA tries to establish a connection
with all session channels for a
consumer session within the timeout.

StatusMsg Open Suspect Application receives channel information for each
session channel via login stream event so that
application get notified which session channel is up or
down or down reconnecting. This should only be sent
once for each underlying reactor channel, upon
initialization of the reactor channel.

EMA receives a “login accepted”
status message from at least one
session channel in a consumer
session and login timeout fires.

RefreshMsg Open Ok Enterprise Message API is successfully establishing a
login stream for a OmmConsumer. Enterprise Message
API notified application with aggregated login response.

EMA receives a “login closed” status
message from a session channel, but
others login stream is still open.

StatusMsg Open Ok There is no change to the aggregated login stream and
application receives channel down event for the session
channel.

EMA receives a “login closed” status
message from every session channel.

StatusMsg Closed Suspect EMA notifies application with a Login Status with
OmmState of Closed/Suspect upon detecting that all
channels in a SessionChannelSet are down either due
to receiving a Login Status Closed/Suspect or channel
down event. See the previous row for behavior if only
some of the session channels are closed. In this case,
OmmConsumer is in terminal state and application
should uninitialize it.

EMA receives a channel down event
from every session channel.

StatusMsg Closed Suspect EMA notifies application with a Login Status with
OmmState of Closed/Suspect indicating channel down
upon detecting that all channels in a
SessionChannelSet are down either due to receiving a
Login Status Closed/Suspect or channel down event.
See two rows for behavior if only some of the session
channels are closed. In this case, OmmConsumer is in
terminal state and application should uninitialize it.

Table 3: Aggregated Login Stream Scenarios
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 53
EMAC390L2UM.250

9 Request Routing
For service’s state aggregation of a particular service:

• ServiceState is UP (1) unless the service of all connections is in the DOWN (0) state.

• AcceptingRequests is UP (1) unless the service of all connections in the DOWN (0) state.

9.1.5 Dictionary Request Timer Handling

The DictionaryRequestTimeOut parameter in ConsumerGroup is used to control how long would Enterprise Message API waits to
receive dictionary response for the ChannelDictionary type from a channel during OmmConsumer initialization. Initialization fails at the
timeout when Enterprise Message API does not receive a dictionary response from a session channel which provides the first available
service for downloading data dictionary.

9.2 Service List

A Service List is a named grouping of particular service names in order to request items using service list name. The ServiceList class is
used to create a service list, and applications have to add ServiceList instances to an instance of OmmConsumerConfig before creating
OmmConsumer.

The following example illustrates the creation of a service list and adding it to OmmConsumer.

NOTE: If element attributes do not match the service name during OmmConsumer creation, Enterprise Message APIremoves and closes the
subsequent connection based on the order of the session channel list. Afterward, it ignores source directory update with mismatched
attributes for the service.

NOTE: Enterprise Message API supports single data dictionary version per OmmConsumer, so all services of all session channels must
support the same version.

NOTE: The concrete services in a service list must have the same quality of service.

/* Create a service list which can subscribe data using any concrete services in this list */

ServiceList serviceList("SVG1");

serviceList.concreteServiceList().push_back("DIRECT_FEED");

serviceList.concreteServiceList().push_back("DIRECT_FEED_2");

OmmConsumer consumer(OmmConsumerConfig().addServiceList(serviceList));

/* Request an item using the service list */

consumer.registerClient(ReqMsg().serviceListName("SVG1").name("LSEG.L"), client);

NOTE: When making a request using the service list name, the response messages will utilize the name and ID of the service list name
instead of the concrete service name and ID.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 54
EMAC390L2UM.250

9 Request Routing
9.3 Item Request Routing and Recovery

Applications can set an item request using a concrete service name, service ID, or service list name in a ReqMsg instance and register it
using the registerClient() method of OmmConsumer. For specifying service name/ID, Enterprise Message API tries to match the
specified concrete service with a session channel according to the ordered list of connections in the OmmConsumer. For service list name,
Enterprise Message API tries to match between the ordered list of concrete service names and the ordered list of connections in the
OmmConsumer.

The following diagram illustrates the request matching workflow for a concrete service and a session channel.

Figure 7. Item Request Matching Workflow

Enterprise Message API conducts automatic item recovery for all streaming item requests initiated by the client, with the exception of private
item streams. The situations that lead to an item’s data becoming stale include loss of connection, service outages, and the provider
transmitting the CLOSED_RECOVER stream state to the consumer, among others. The process of item recovery involves recovering items
from a stale condition by closing the existing item stream and utilizing the item request matching workflow to identify a session channel for
re-requesting the item. Request Routing also works with the WarmStandby feature which has its own fallback mechanism to receive data
from a standby server when the active server or service is unavailable. Items that cannot be retrieved due to the unavailability of a service for
data requests will be placed in a recovery queue for future retrieval at an appropriate time. The items that are in the CLOSED stream state
will be recovered in others session channel until there is no other channel, then the closed status message will be sent to application.

NOTE: The SessionEnhancedItemRecovery parameter is set to true by default to recovery items to others session channels when the
session channel is temporary down due to connection loss. Users can override this behavior by setting the parameter to false to let
Enterprise Message API wait until the connection is recovered and request data with the requested service name.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 55
EMAC390L2UM.250

9 Request Routing
9.4 Posting Messages

In order to perform off-stream posting, the aggregated login refresh for all session channels must support the OMM post feature, otherwise
the OmmInvalidUsageException is thrown to application. The service name or service ID specified in a PostMsg will be translated into
the underlying session channel's service ID. The AckMsg will be transmitted through the session channel which it was received.

For off-stream posting, Enterprise Message API will distribute the PosMsg to all connected session channels that are compatible with the
designated service. Enterprise Message API will discard the PostMsg from any session channel that does not support the specified service
name or ID.

For on-stream posting, Enterprise Message API will submit the PostMsg to the session channel of the requested stream that supports the
specified service. The OmmInvalidUsageException will be raised to the application if the specified service name or ID is not present on
the requested stream.

9.5 Sending Generic Message

The application is capable of submitting a GenericMsg on both the login and item streams. In this process, the specified service ID within
the GenericMsg will be converted into the service ID of the underlying session channel. However, if the service ID is unknown, this will not
trigger an OmmInvalidUsageException, and the unknown service ID will be transmitted as it is.

For sending a GenericMsg on login stream, Enterprise Message API will distribute the GenericMsg to all connected channels without
regard to the validity of the specified ID.

9.6 Session Channel Information from OmmConsumer and OmmConsumerEvent

Application can get a list of session channels from the sessionChannelInfo() method from either OmmConsumer or
OmmConsumerEvent classes. This would help application to get a list of active session channels in order to keep track each session's
channel state. The session channel will be removed from the list once it is closed by Enterprise Message API, or the channel is completely
down. Users must specify a List of ChannelInformation in order to return the current session information per function call. The following
is the sample code how to iterator through the list of ChannelInformation from the function.

Moreover, the ChannelInformation class can also get a channel name and session channel name using the channelName() and
sessionChannelName() method respectively.

EmaVector<ChannelInformation> statusVector;

event.getSessionInformation(statusVector);

// Print out the channel information.

for (UInt32 i = 0; i < statusVector.size(); ++i)

{

 cout << statusVector[i] << endl;

}

NOTE: The sessionChannelInfo() method returns an empty list if request routing is not enabled.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 56
EMAC390L2UM.250

10 Troubleshooting and Debugging
10 Troubleshooting and Debugging

10.1 Enterprise Message API Logger Usage

The Enterprise Message API provides a logging mechanism useful for debugging runtime issues. In the default configuration, Enterprise

Message API is set to log significant events encountered during runtime and direct logging output to a file. If needed, you can turn off
logging, or direct its output to stdout. Additionally, applications can configure the logging level at which the Enterprise Message API logs
event (to log every event, only error events, or nothing). For further details on managing and configuring the EMS logging function, refer to
the Enterprise Message API Configuration Guide.

10.2 Omm Error Client Classes

10.2.1 Error Client Description

Enterprise Message API has two Error Client classes: OmmConsumerErrorClient and OmmProviderErrorClient. These two classes
are an alternate error notification mechanism in the Enterprise Message API, which you can use instead of the default error notification
mechanism (i.e., OmmException, for details, refer to Section 10.3). Both mechanisms deliver the same information and detect the same
error conditions. To use Error Client, applications need to implement their own error client class, override the default implementation of each
method, and pass this Error Client class on the constructor to OmmConsumer and OmmProvider.
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 57
EMAC390L2UM.250

10 Troubleshooting and Debugging
10.2.2 Example: Error Client

The following example illustrates an application error client and depicts simple processing of the onInvalidHandle() method. In the
following example, ClassName is either OmmConsumerErrorClient (for Enterprise Message API consumer applications) or
OmmProviderErrorClient (for Enterprise Message API provider applications).

class AppErrorClient : public OmmConsumerErrorClient

{

public :

 void onInvalidHandle(UInt64 handle, const EmaString& text);

 void onInaccessibleLogFile(const EmaString& filename, const EmaString& text);

 void onMemoryExhaustion(const EmaString& text);

 void onInvalidUsage(const EmaString& text, Int32 errorCode);

 void onSystemError(Int64 code, void* ptr, const EmaString& text);

 void onJsonConverter(const EmaString& text, Int32 errorCode, const ConsumerSessionInfo&
sessionInfo);

 void onDispatchError(const EmaString& text, Int32 errorCode);

};

void AppErrorclient::onInvalidHandle(UInt64 handle, const EmaString& text)

{

 cout << "InvalidHandle: " << endl << "Handle = " << handle << endl << "text = " << text << endl;

}

...

void AppErrorclient::onDispatchError(const EmaString& text, Int32 errorCode);

{

cout << "DispatchError: " << endl << "text = " << text << endl << "error = " << errorCode << endl;

}

Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 58
EMAC390L2UM.250

10 Troubleshooting and Debugging
10.3 OmmException Class

If the Enterprise Message API detects an error condition, the Enterprise Message API might throw an exception. All exceptions in the
Enterprise Message API inherit from the parent class OmmException, which provides functionality and methods common across all
OmmException types.

The Enterprise Message API supports the following exception types:

• OmmInaccessibleLogFileException: Thrown when the Enterprise Message API cannot open a log file for writing.

• OmmInvalidConfigurationException: Thrown when the Enterprise Message API detects an unrecoverable configuration error.

• OmmInvalidHandleException: Thrown when an invalid / unrecognized item handle is passed in on OmmConsumer or
OmmProvider class methods.

• OmmInvalidUsageException: Thrown when the Enterprise Message API detects invalid interface usage.

• OmmJsonConverterException: Thrown when the Enterprise Message API fails to perform a RWF/JSON conversion.

• OmmMemoryExhaustionException: Thrown when the Enterprise Message API detects an out-of-memory condition.

• OmmOutOfRangeException: Thrown when a passed-in parameter lies outside the valid range.

• OmmSystemException: Thrown when the Enterprise Message API detects a system exception.

• OmmUnsupportedDomainTypeException: Thrown if domain type specified on a message is not supported.

10.4 Creating a DACSLOCK for Publishing Permission Data

Provider applications can create a DACSLocks and publish it to permission data on the LSEG Real-Time Distribution System. A DACSLock
controls access to data by users. For further details on the DACSLock API, refer to the Enterprise Transport API C Edition DACSLock
Library.

The following example code illustrates how to create a DACSLock.

TIP: LSEG recommends you use try and catch blocks during application development and QA to quickly detect and fix any
Enterprise Message API usage or application design errors.

#include "dacs_lib.h"

typedef struct {

 char _operator;

 unsigned short pc_listLen;

 unsigned long pc_list[256];

} PC_DATA;

PC_DATA pcData;

PRODUCT_CODE_TYPE* pcTypePtr = (PRODUCT_CODE_TYPE *)&pcData;

unsigned char* lockPtr = NULL;

int lockLen = 0;

DACS_ERROR_TYPE dacsError;

unsigned char dacsErrorBuffer[128];

printf("\nGenerates DACS lock \n");

pcData._operator = OR_PRODUCT_CODES;
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 59
EMAC390L2UM.250

10 Troubleshooting and Debugging
pcData.pc_listLen = 1;

pcData.pc_list[0] = 1001;

int serviceId = 261;

if (DACS_GetLock(serviceId, pcTypePtr, &lockPtr, &lockLen, &dacsError) == DACS_FAILURE)

{

 if (DACS_perror(dacsErrorBuffer, sizeof(dacsErrorBuffer), (unsigned char *)"DACS_GetLock() failed

 with error", &dacsError) == DACS_SUCCESS)

 {

 printf("%s\n", dacsErrorBuffer);

 }

 else

 {

 printf("DACS_GetLock() failed\n");

 }

 return;

}

printf("DACS_GetLock() - Success\n");

EmaBuffer permissionData;

permissionData.setFrom((const char*)lockPtr, lockLen);
Enterprise Message API C++ Edition 3.9.0.L2 - Developers Guide 60
EMAC390L2UM.250

© LSEG 2015 - 2025. All rights reserved.

Republication or redistribution of LSEG Data & Analytics content, including by framing or similar
means, is prohibited without the prior written consent of LSEG Data & Analytics. 'LSEG Data &
Analytics' and the LSEG Data & Analytics logo are registered trademarks and trademarks of LSEG
Data & Analytics.

Any third party names or marks are the trademarks or registered trademarks of the relevant third party.

Document ID: EMAC390L2UM.250
Date of issue: May 2025

	1 Introduction
	1.1 About this Manual
	1.2 Audience
	1.3 Programming Language
	1.4 Acronyms and Abbreviations
	1.5 References
	1.6 Documentation Feedback
	1.7 Document Conventions

	2 Product Overview
	2.1 Enterprise Message API Product Description
	2.2 Product Documentation and Learning the Enterprise Message API
	2.2.1 Consumer Examples
	2.2.2 Provider Examples

	2.3 Product Architecture
	2.3.1 Enterprise Message API Consumer Architecture
	2.3.2 Enterprise Message API Provider Architecture
	2.3.3 Enterprise Message API Codec Architecture
	2.3.4 Enterprise Message API Error Handling

	2.4 Tunnel Streams

	3 OMM Containers and Messages
	3.1 Overview
	3.2 Classes
	3.2.1 DataType Class
	3.2.2 DataCode Class
	3.2.3 Data Class
	3.2.4 Msg Class
	3.2.5 OmmError Class
	3.2.6 TunnelStreamRequest and ClassOfService Classes

	3.3 Working with OMM Containers
	3.3.1 Example: Populating a FieldList Class
	3.3.2 Example: Populating a Map Class Relying on the FieldList Memory Buffer
	3.3.3 Example: Populating a Map Class Relying on the Map Class Buffer
	3.3.4 Example: Extracting Information from a FieldList Class
	3.3.5 Example: Application Filtering on the FieldList Class
	3.3.6 Example: Extracting FieldList information using a Downcast Operation

	3.4 Working with OMM Messages
	3.4.1 Example: Populating the GenericMsg with an ElementList Payload
	3.4.2 Example: Extracting Information from the GenericMsg Class
	3.4.3 Example: Working with the TunnelStreamRequest Class

	4 Consumer Classes
	4.1 OmmConsumer Class
	4.1.1 Connecting to a Server and Opening Items
	4.1.2 Opening Items Immediately After OmmConsumer Object Instantiation
	4.1.3 Destroying the OmmConsumer Object
	4.1.4 Example: Working with the OmmConsumer Class
	4.1.5 Working with Items
	4.1.6 Example: Working with Items
	4.1.7 Working with Tunnel Streams
	4.1.8 Example: Working with Tunnel Streams

	4.2 OmmConsumerClient Class
	4.2.1 OmmConsumerClient Description
	4.2.2 Example: OmmConsumerClient

	4.3 OmmConsumerConfig Class
	4.3.1 OmmConsumerConfig Description
	4.3.2 Unencrypted Connections
	4.3.3 Encrypted Connections
	4.3.3.1 Implementing Protocols and Encryption Behavior
	4.3.3.2 OpenSSL Libraries
	4.3.3.3 Certificate Authority

	4.3.4 HTTP Proxy Connections

	5 Provider Classes
	5.1 OmmProvider Class
	5.1.1 Connecting to ADH and Submitting Items
	5.1.2 Interactive Providers: Post OmmProvider Object Instantiation
	5.1.3 Non-Interactive Providers: Post OmmProvider Object Instantiation
	5.1.4 Non-Interactive Providers: Encrypted Connections and HTTP Proxy Tunneling
	5.1.5 Destroying the OmmProvider Object
	5.1.6 Non-Interactive Example: Working with the OmmProvider Class
	5.1.7 Interactive Provider Example: Working with the OmmProvider Class
	5.1.8 Interactive Provider Example: Handling Post Message
	5.1.9 Interactive Provider Example: Handling RTT Responses from Consumer
	5.1.10 Working with Items
	5.1.11 Packing with Providers
	5.1.11.1 Interactive Provider Packing Example
	5.1.11.2 Non-interactive Provider Packing Example

	5.2 OmmProviderClient Class
	5.2.1 OmmProviderClient Description
	5.2.2 Non-Interactive Example: OmmProviderClient
	5.2.3 Interactive Example: OmmProviderClient

	5.3 OMMIProviderConfig
	5.4 OmmNiProviderConfig Class

	6 Consuming Data from the Cloud
	6.1 Overview
	6.2 Encrypted Connections
	6.3 Credential Management
	6.4 Version 1 Authentication Using oAuth Password and Refresh_Token
	6.4.1 Client_ID (AppKey) and Client Secret
	6.4.2 Obtaining Initial Access and Refresh Tokens
	6.4.3 Refreshing the Access Token and Sending a Login Reissue

	6.5 Version 2 Authentication Using OAuth Client Credentials
	6.5.1 Configuring and Managing Version 2 Credentials
	6.5.1.1 JWT Credentials Handling

	6.5.2 Version 2 OAuth Client Credentials Token Lifespan

	6.6 Service Discovery
	6.7 Consuming Market Data
	6.8 HTTP Error Handling for Reactor Token Reissues
	6.9 Cloud Connection Use Cases
	6.9.1 Session Management Use Case
	6.9.2 Query Service Discovery

	6.10 Logging of Authentication and Service Discovery Interaction
	6.10.1 Logged Request Information
	6.10.2 Logged Response Information

	7 Warm Standby Feature
	7.1 Overview
	7.2 Warm Standby Modes
	7.3 Warm Standby Configuration and Feature Details

	8 Preferred Host Feature
	8.1 Preferred Host Reconnection Behavior Changes
	8.2 Preferred Host Operation Steps
	8.2.1 ChannelSet Behaviors with Preferred Host Options Enabled
	8.2.2 Warm Standby Configuration with Preferred Host Options Enabled

	9 Request Routing
	9.1 Administrative Domains Behaviors
	9.1.1 Login Request Timer Handling and Login Response Aggregation
	9.1.2 Aggregated Login Elements
	9.1.3 Scenarios for Receiving Aggregated Login Stream
	9.1.4 Directory Request Timer Handling and Directory Response Aggregation
	9.1.5 Dictionary Request Timer Handling

	9.2 Service List
	9.3 Item Request Routing and Recovery
	9.4 Posting Messages
	9.5 Sending Generic Message
	9.6 Session Channel Information from OmmConsumer and OmmConsumerEvent

	10 Troubleshooting and Debugging
	10.1 Enterprise Message API Logger Usage
	10.2 Omm Error Client Classes
	10.2.1 Error Client Description
	10.2.2 Example: Error Client

	10.3 OmmException Class
	10.4 Creating a DACSLOCK for Publishing Permission Data

